180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simplified model for drag evaluation of a streamlined body with leading-edge damage

, , &
Pages 656-679 | Received 09 Feb 2021, Accepted 11 Aug 2021, Published online: 11 Sep 2021

References

  • Perry AE, Schofield WH, Joubert PN. Rough wall turbulent boundary layers. J Fluid Mech. 1969;37(2):383–413.
  • Leonardi S, Orlandi P, Smalley R, et al. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J Fluid Mech. 2003;491:229.
  • Bechert D, Bartenwerfer M. The viscous flow on surfaces with longitudinal ribs. J Fluid Mech. 1989;206:105–129.
  • Chavarin A, Luhar M. Resolvent analysis for turbulent channel flow with riblets. AIAA Journal. 2020;58(2):589–599.
  • Coceal O, Thomas T, Castro I, et al. Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary Layer Meteorol. 2006;121(3):491–519.
  • Leonardi S, Castro IP. Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech. 2010;651:519–539.
  • Zhu X, Anderson W. Turbulent flow over urban-like fractals: prognostic roughness model for unresolved generations. J Turbulence. 2018;19(11-12):995–1016.
  • Chan L, MacDonald M, Chung D, et al. A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J Fluid Mech. 2015;771:743–777.
  • Bhaganagar K, Kim J, Coleman G. Effect of roughness on wall-bounded turbulence. Flow Turbul Combust. 2004;72(2-4):463–492.
  • Mollicone JP, Battista F, Gualtieri P, et al. Effect of geometry and reynolds number on the turbulent separated flow behind a bulge in a channel. J Fluid Mech. 2017;823:100–133.
  • Dean B, Bhushan B. Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Philos Tran R Soc A: Math Phys Eng Sci. 2010;368(1929):4775–4806.
  • García-Mayoral R, Jiménez J. Drag reduction by riblets. Philos Trans R Soc A: Math Phys Eng Sci. 2011;369(1940):1412–1427.
  • Arenas I, García E, Fu MK, et al. Comparison between super-hydrophobic, liquid infused and rough surfaces: a direct numerical simulation study. ASME J Fluid Mech. 2019;869:500–525.
  • Flack KA, Schultz MP. Review of hydraulic roughness scales in the fully rough regime. ASME J Fluids Eng. 2010;132(4):041203. DOI:10.1115/1.4001492.
  • Flack KA, Schultz MP, Volino RJ. The effect of a systematic change in surface roughness skewness on turbulence and drag. Int J Heat Fluid Flow. 2020;85:108669.
  • Bartolomé L, Teuwen J. Prospective challenges in the experimentation of the rain erosion on the leading edge of wind turbine blades. Wind Energy. 2019;22(1):140–151.
  • Sareen A, Sapre CA, Selig MS. Effects of leading edge erosion on wind turbine blade performance. Wind Energy. 2014;17(10):1531–1542.
  • Gaudern N. A practical study of the aerodynamic impact of wind turbine blade leading edge erosion. J Phys: Conf Ser. 2014;524:012031.
  • Wang Y, Hu R, Zheng X. Aerodynamic analysis of an airfoil with leading edge pitting erosion. J Solar Energy Eng. 2017;139(6):061002.
  • Han W, Kim J, Kim B. Effects of contamination and erosion at the leading edge of blade tip airfoils on the annual energy production of wind turbines. Renewable Energy. 2018;115:817–823.
  • Ge M, Zhang H, Wu Y, et al. Effects of leading edge defects on aerodynamic performance of the s809 airfoil. Energy Conversion Manage. 2019;195:466–479.
  • Kyle R, Wang F, Forbes B. The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade. Wind Energy. 2020;23(4):953–966.
  • Blade P. [n.d.; cited 2020 Jan 30]. Available from: http://bladepartners.com/services-wear-tear/
  • Dalili N, Edrisy A, Carriveau R. A review of surface engineering issues critical to wind turbine performance. Renewable Sustainable Energy Rev. 2009;13(2):428–438.
  • Marquillie M, Laval JP, Dolganov R. Direct numerical simulation of a separated channel flow with a smooth profile. J Turbulence. 2008;9:N1. DOI:10.1080/14685240701767332.
  • Mottaghian P, Yuan J, Piomelli U. Boundary layer separation under strong adverse pressure gradient over smooth and rough walls. In: Direct and large-eddy simulation x. Springer; 2018. p. 173–179
  • de Jesus A, Schiavo L, Azevedo J, et al. Adverse pressure gradients and curvature effects in turbulent channel flows. In: Progress in wall turbulence 2. Springer; 2016. p. 295–306
  • J-P Laval. DNS: 2D converging-diverging channel, Re=12600; 2011. [cited 2020 Jan 30]. Available from: https://turbmodels.larc.nasa.gov/Other_DNS_Data/conv-div-channel12600.html
  • Marquillie M, Ehrenstein U, Laval JP. Instability of streaks in wall turbulence with adverse pressure gradient. J Fluid Mech. 2011;681:205–240.
  • Schramm M, Rahimi H, Stoevesandt B, et al. The influence of eroded blades on wind turbine performance using numerical simulations. Energies. 2017;10(9):1420.
  • Nasser MM. Fast computation of the circular map. Comput Methods Funct Theory. 2015;15(2):187–223.
  • Nasser MM. Plgcirmap: A matlab toolbox for computing conformal mappings from polygonal multiply connected domains onto circular domains. SoftwareX. 2020;11:100464.
  • Hunt JC, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. NASA Center Turbulence Res Proc Summer Program; 1988.
  • Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys. 1976;21(3):251–269.
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys Fluids. 1999;11(4):943–945.
  • Sherry M, Jacono DL, Sheridan J. An experimental investigation of the recirculation zone formed downstream of a forward facing step. J Wind Eng Ind Aerodynamics. 2010;98(12):888–894.
  • Bowen A, Lindley D. A wind-tunnel investigation of the wind speed and turbulence characteristics close to the ground over various escarpment shapes. Boundary Layer Meteorol. 1977;12(3):259–271.
  • Mariotti A, Buresti G, Gaggini G, et al. Separation control and drag reduction for boat-tailed axisymmetric bodies through contoured transverse grooves. J Fluid Mech. 2017;832:514–549.
  • Orlandi P. Fluid flow phenomena: a numerical toolkit. Vol. 55. Springer Science & Business Media; 2012.
  • Möller T, Trumbore B. Fast: minimum storage ray-triangle intersection. J Graph Tools. 1997;2(1):21–28.
  • Orlandi P, Leonardi S. Dns of turbulent channel flows with two-and three-dimensional roughness. J Turbulence. 2006;7:N73. DOI:10.1080/14685240600827526.
  • Burattini P, Leonardi S, Orlandi P, et al. Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J Fluid Mech. 2008;600:403–426.
  • Yu H, Ciri U, Malik A, et al. Direct numerical simulation for irregular roughness on a curved surface. Bulletin of the American Physical Society. 2019: P42.008.
  • Ciri U, Leonardi S. Heat transfer in a turbulent channel flow with super-hydrophobic or liquid-infused walls. J Fluid Mech. 2021;908:A28-1–A28-2.
  • Yu H, Ciri U, Malik AS, et al. Decoupled effects of localized camber and spanwise bending for flexible thin wing. AIAA J. 2020;58(5):2293–2306.
  • Yu H, Ciri U, Leonardi S, et al. A simplified model for drag evaluation of a streamlined body with surface roughness. Bulletin Am Phys Soc. 2020: Q05.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.