322
Views
4
CrossRef citations to date
0
Altmetric
Research Article

A double-averaged Navier-Stokes k – ω turbulence model for wall flows over rough surfaces with heat transfer

ORCID Icon
Pages 713-734 | Received 19 Apr 2021, Accepted 12 Aug 2021, Published online: 11 Sep 2021

References

  • Nikuradse J Laws of flows in rough pipes. Washington (DC): NACA; 1937. Technical Memorandum 1292.
  • Wilcox D. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988 Nov;26(11):1299–1310.
  • Hellsten A, Laine S. Extension of the k−ω shear-stress transport turbulence model for rough-wall flows. AIAA J. 1998 Sep;36(9):1728–1729.
  • Aupoix B. A general strategy to extend turbulence models to rough surfaces – application to Smith's k−l model. J Fluid Eng. 2007 Oct;129(10):1245–1254.
  • Knopp T, Eisfeld B, Calvo J. A new extension for k−ω turbulence models to account for wall roughness. Int J Heat Fluid Flow. 2009;30:54–65.
  • Aupoix B. Roughness corrections for the k−ω shear stress transport model: status and proposals. J Fluids Eng. 2015 Feb;137:021202.
  • Aupoix B. Improved heat transfer predictions on rough surfaces. Int J Heat Fluid Flows. 2015 Dec;56:160–171.
  • Aupoix B. Revisiting the discrete element method for predictions of flows over rough surfaces. J Fluids Eng. 2016 Mar;138:31205.
  • Schlichting H. Experimental investigation of the problem of surface roughness. Washington (DC): NACA; 1937. Technical Memorandum 823.
  • Finson M. A Reynolds stress model for boundary layer transition with application to rough surfaces. Wakefield (MA): Physical Sciences Inc. 1975. Interim scientific report.
  • Finson M, Clarke A. The effect of surface roughness character on turbulent reentry heating [AIAA paper 80-1459 15th thermophysics conference, Snowmass (CO)]; 1980.
  • Finson M. A model for rough wall turbulent heating and skin friction [AIAA paper 82-0199 20th aerospace science meeting, Orlando (FL)]; 1982.
  • Robertson J. Surface resistance as a function of the concentration and size of roughness elements [dissertation]. State University of Iowa; 1961.
  • Christoph G, Pletcher R. Predictions of rough-wall skin friction and heat transfer. AIAA J. 1983 Apr;21(4):509–515.
  • Christoph G, Fiore A. Experimental and computational study of roughness effects at M = 6 [AIAA paper 84-1681 17thfluid dynamics, plasma dynamics and laser conference, Snowmass (CO)]; 1984.
  • Taylor R, Coleman H, Hodge B. Prediction of turbulent rough-wall skin friction using a discrete element approach. J Fluids Eng. 1985 Jun;107:251–257.
  • Lin T, Bywater R. Turbulence models for high-speed, rough-wall boundary layers. AIAA J. 1982 Mar;20(3):325–333.
  • Hosni M, Coleman H, Taylor R. Measurements and calculations of fluid dynamic characteristics of rough-wall turbulent boundary layer flows. J Fluids Eng. 1993 Sep;115:383–388.
  • Tarada F. Prediction of rough-wall boundary layers using a low Reynolds number k−ϵ model. Int J Heat Fluid Flow. 1990 Dec;11(4):331–344.
  • McClain S, Collins S, Hodge B, et al.The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness. J Fluids Eng. 2006 May;128:579–586.
  • Stripf M, Schulz A, Bauer HJ. Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J Turbomach. 2008 Feb;130(2):021003. Available from: https://doi.org/10.1115/1.2750675.
  • Stripf M, Schulz A, Bauer H. Model formulations. J Turbomach. 2009 Jul;131: 031016 03101 031016–1 –031016–10.
  • Hanson DR, Kinzel MP, McClain ST. Validation of the discrete element roughness method for predicting heat transfer on rough surfaces. Int J Heat Mass Transf. 2019 Jun;136:1217–1232. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.062.
  • Whitaker S. Flows in porous media I: A theoretical derivation of Darcy's law. Transp Porous Media. 1986;1:3–25.
  • Kuwata Y, Suga K, Kawaguchi Y. An extension of the second moment closure model for turbulent flows over macro rough walls. Int J Heat Fluid Flow. 2019 Jun;77:186–201. Available from: https://doi.org/10.1016/j.ijheatfluidflow.2019.04.003.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness. Int J Heat Fluid Flow. 2019;77:1–18. Available from: http://www.sciencedirect.com/science/article/pii/S0142727X17311232.
  • Chedevergne F, Forooghi P. On the importance of the drag coefficient modelling in the double averaged Navier-stokes equations for prediction of the roughness effects. J Turbul. 2020 Aug;21(8):463–482. Available from: https://doi.org/10.1080/14685248.2020.1817465.
  • Craft T, Launder B. A Reynolds stress closure designed for complex geometries. Int J Heat Fluid Flows. 1996 Jun;17(3):245–254.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over systematically varied irregular rough surfaces. J Fluid Mech. 2019 Jan;862:781–815. Available from: https://doi.org/10.1017/jfm.2018.953.
  • Menter F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994 Aug;32(8):1598–1605.
  • Jiménez J. Turbulent flows over rough walls. Annu Rev Fluid Mech. 2004;36:173–196.
  • Flack K, Schultz M, Connelly J. Examination of a critical roughness height for outer layer similarity. Phys Fluids. 2007;19(095104):1–9.
  • Raupach M, Antonia R, Rajagopalan S. Rough-wall turbulent boundary layers. Appl Mech Rev. 1991 Jan;44(1):1–25.
  • Townsend A. The structure of turbulent shear flow. In: Cambridge Monographs on Mechanics and Applied Mathematics, 2nd ed. Cambridge University Press; 1976
  • Busse A, Ltzner M, Sandham N. Direct numerical simulation of a turbulent flow over a rough surface based on a surface scan. Comput Fluids. 2015;116:129–147.
  • Forooghi P, Stroh A, Magagnato F, et al. Toward a universal roughness correlation. J Fluids Eng. 2017 Aug;139(12):121201.
  • Forooghi P, Frohnapfel B, Magagnato F, et al. A modified parametric forcing approach for modelling of roughness. Int J Heat Fluid Flow. 2018 Jun;71:200–209.
  • Piller M. Direct numerical simulation of turbulent forced convection in a pipe. Int J Numer Methods Fluids. 2005;49(6):583–602. Available from: https://doi.org/10.1002/fld.994.
  • ukauskas A. Heat transfer from tubes in crossflow. In: Hartnett JP and Irvine TF, editors, Advances in heat transfer. Vol. 8; 1972. p. 93–160
  • Forooghi P, Stripf M, Frohnapfel B. A systematic study of turbulent heat transfer over rough walls. Int J Heat Mass Transf. 2018 Dec;127:1157–1168.
  • Cazalbou J, Spalart P, Bradshaw P. On the behavior of two-equation models at the edge of a turbulent region. Phys Fluids A. 1994 May;6(5):1797–1804.
  • Hoyas S, Jimnez J. Scaling of velocity fluctuations in turbulent channels up to Reτ=2000. Phys Fluids. 2006;18:011702.
  • Jimnez J, Hoyas S. Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech. VOIR REF 2008 Sep;611(25):215–236. https://doi.org/https://doi.org/10.1017/S0022112008002747.
  • Jimnez J, Hoyas S. Turbulent fluctuations above the buffer layer of wall-bounded flows. J Fluid Mech. 2008;611:215–236.
  • Nikuradse J. Strömungsgesetze in rauhen Rohren. VDI-Forschungsheft; 1933. 361.
  • Busse A, Jelly TO. Influence of surface anisotropy on turbulent flow over irregular roughness. Flow Turbul Combust. 2019 Nov;104(2–3):331–354. Available from: https://doi.org/10.1007/s10494-019-00074-4.
  • Jelly TO, Busse A. Reynolds number dependence of reynolds and dispersive stresses in turbulent channel flow past irregular near-gaussian roughness. Int J Heat Fluid Flow. 2019 Dec;80:108485. Available from: https://doi.org/10.1016/j.ijheatfluidflow.2019.108485.
  • Toussaint D, Chedevergne F, Léon O. Analysis of the different sources of stress acting in fully rough turbulent flows over geometrical roughness elements. Phys Fluids. 2020 Jul;32(7):075107. Available from: https://doi.org/10.1063/5.0010771.
  • Moltchanov S, Shavit U. A phenomenological closure model of the normal dispersive stresses. Water Resour Res. 2013 Dec;49(12):8222–8233. Available from: https://doi.org/10.1002/2013wr014488.
  • Wu S, Christensen KT, Pantano C. Modelling smooth- and transitionally rough-wall turbulent channel flow by leveraging innerouter interactions and principal component analysis. J Fluid Mech. 2019;863:407453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.