344
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Hydrodynamics of flow through a degraded channel bed

, , &
Pages 814-842 | Received 01 Sep 2021, Accepted 11 Nov 2021, Published online: 03 Dec 2021

References

  • Nikora V, Goring D. Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng. 2000;126(9):679e–690.
  • Jain RK, Kumar A, Kothyari UC. Turbulence statistics of flow through degraded channel bed of sand-gravel mixture. J Hyd Environ Res. 2015;9(4):508–518.
  • Dey S, Das R, Gaudio R, et al. Turbulence in mobile-bed streams. Acta Geophys. 2012;60:1547–1588.
  • Dey S, Sarkar S, Solari L. Near-bed turbulence characteristics at the entrainment threshold of sediment beds. J Hydraul Eng. 2011;137(9):945–958.
  • Cooper JR, Tait SJ. Spatially representative velocity measurement over water-worked gravel beds. Water Resour Res. 2010;46(11):W11559.
  • Padhi E, Penna N, Dey S, et al. Near-bed turbulence structures in water-worked and screeded gravel-bed flows. Phys Fluids. 2019;31(4):045107.
  • Padhi E, Penna N, Dey S, et al. Spatially averaged dissipation rate in flows over water-worked and screeded gravel beds. Phys Fluids. 2018;30(12):125106.
  • Penna N, Padhi E, Dey S, et al. Structure functions and invariants of the anisotropic Reynolds stress tensor in turbulent flows on water-worked gravel beds. Phys Fluids. 2020;32(5):055106.
  • Penna N, Padhi E, Dey S, et al. Response of turbulence stresses and scaling behavior of high-order structure functions to a water-worked gravel-bed surface and its implication on sediment transport. Int J Sed Res. 2022;37(1):1–13.
  • Penna N, Padhi E, Dey S, et al. Statistical characterization of unworked and water-worked gravel-bed roughness structures. J Hydraul Res. 2021;59(3):420–436.
  • Dey S, Paul P, Ali SZ, et al. Reynolds stress anisotropy in flow over two-dimensional rigid dunes. Proc A Roy Soc. 2020;476(October):20200638.
  • Dey S, Paul P, Fang H, et al. Hydrodynamics of flow over two-dimensional dunes. Phys Fluids. 2020;32(2):025106.
  • Zanchi B, Radice A. Celerity and height of aggradation fronts in gravel-bed laboratory channel. J Hydraul Eng. 2021;147(10):04021034.
  • Zanchi B, Zucchi M, Radice A. On the relationship between experimental and numerical modelling of gravel-bed channel aggradation. Hydrology. MDPI. 2019;6(1):9.
  • Shvidchenko AB, Pender G. Macroturbulent structure of open-channel flow over gravel beds. Water Resour Res. 2001;37(3):709–719.
  • Wilcock P, Stephen K, Curran JC. Experimental study of the transport of mixed sand and gravel. Water Resour. Res. 2001;37(12):3349–3358.
  • Grams PE, Wilcock PR. Equilibrium entrainment of fine sediment over a coarse immobile bed. Water Resour Res. 2007;43:W10420.
  • Wren DG, Langendoen EJ, Kuhnle RA. Effects of sand addition on turbulent flow over an immobile gravel bed. J Geophys Res (Earth Surface). 2011;116(F1):01018.
  • Kolmogorov AN. Local structure of turbulence in an incompressible fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR. 1941;30:299–303.
  • Kolmogorov AN. Dissipation of energy in the locally isotropic turbulence. Dokl Akad Nauk SSSR. 1941;32:19–211.
  • Obukhov AM. On the distribution of energy in the spectrum of turbulent flow. Dokl Akad Nauk SSSR. 1941;1:22–24.
  • Landau LD, Lifshitz EM. Fluid mechanics. London: Pergamon; 1959.
  • Oboukhov AM. Some specific features of atmospheric tubulence. J Fluid Mech. 1962;13(1):77–81.
  • Kolmogorov AN. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J Fluid Mech. 1962;13(1):82–85.
  • Boschung J, Hennig F, Denker D, et al. Analysis of structure function equations up to the seventh order. J Turbulence. 2017;18(11):1001–1032.
  • Anselmet F, Gagne Y, Hopfinger E, et al. High-order velocity structure functions in turbulent shear flows. J Fluid Mech. 1984;140:63–89.
  • Ferraro D, Servidio S, Carbone V, et al. Turbulence laws in natural bed flows. J Fluid Mech. 2016;798:540–571.
  • Yaglom AM. On the local structure of a temperature field in a turbulent flow. Dokl Akad Nauk SSSR. 1949;69:743–746.
  • Monin AS, Yaglom AM. Statistical fluid mechanics. Cambridge: MIT Press; 1975.
  • Frisch U. Turbulence: the legacy of A. N. Kolmogorov. Cambridge: Cambridge University Press; 1955.
  • Coscarella F, Servidio S, Ferraro D, et al. Turbulent energy dissipation rate in a tilting flume with a highly rough bed. Phys Fluids. 2017;29(8):085101.
  • Kurien S, Sreenivasan KR. Anisotropic scaling contributions to high-order structure functions in high Reynolds number turbulence. Phys Rev E. 2000;62(2):2206–2212.
  • Water WVD, Herweijer JA. High-order structure functions of turbulence. J Fluid Mech. 1999;387(May):3–37.
  • Coscarella F, Penna N, Servidio S, et al. Turbulence anisotropy and intermittency in open-channel flows on rough beds. Phys Fluids. 2020;32(11):115127.
  • Goring DG, Nikora VI. Despiking acoustic Doppler velocimeter data. J Hydraul Eng. 2002;128(1):117–126.
  • Lu SS, Willmarth WW. Measurements of the structure of the Reynolds stress on a turbulent boundary layer. J Fluid Mech. 1973;60:481e–511.
  • Bigillon F, Niño Y, Garcia MH. Measurements of turbulence characteristics in an open-channel flow over a transitionally-rough bed using particle image velocimetry. Exp Fluids. 2006;41(6):857–867.
  • Mignot E, Barthelemy E, Hurther D. Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J Fluid Mech. 2009;618:279–303.
  • López F, García MH. Wall similarity in turbulent open channel flow. J Eng Mech. 1999;125(7):789–796.
  • Hurther D, Lemmin U. Shear stress statistics and wall similarity analysis in turbulent boundary layers using a high-resolution 3-D ADVP. IEEE J Ocean Eng. 2000;25(4):446–457.
  • Mignot E, Hurther D, Barthelemy E. Discussion of double-averaging turbulence characteristics in flows over a gravel bed by S. Sarkar and S. Dey. J Hydraul Res. 2011;49(5):703–704.
  • Sarkar S, Dey S. Reply by the authors. J Hydraul Res. 2011;49(5):704–705.
  • Arenas A, Chorin AJ. On the existence and scaling of structure functions in turbulence according to the data. Proc Natl Acad Sci USA. 2006;103(12):4352–4355.
  • Irwin HPAH. Measurements in a self-preserving plane wall jet in a positive pressure gradient. J Fluid Mech. 1973;61(1):33–63.
  • Krogstad PA, Antonia RA. Surface roughness effects in turbulent boundary layers. Exps Fluids. 1999;27(5):450–460.
  • Zhu W, van Hout R, Luznik L, et al. A comparison of PIV measurements of canopy turbulence performed in the field and in a wind tunnel model. Exp Fluids. 2006;41:309–318.
  • Wan M, Servidio S, Oughton S, et al. The third-order law for magnetohydrodynamic turbulence with shear: numerical investigation. Phys Plasmas. 2010;17(5):052307.
  • Singh AK, Howard KB, Guala M. On the homogenization of turbulent flow structures in the wake of a model wind turbine. Phys Fluids. 2014;26:025103.
  • Sarkar S, Papanicolao AN, Dey S. Turbulence in a gravel-bed stream with an array of large gravel obstacles. J Hydraul Eng. 2016;142:04016052.
  • Han X, He G, Fang H. Double-averaging analysis of turbulent kinetic energy fluxes and budget based on large-eddy simulation. J Hydrodyn Ser B. 2017;29:567–574.
  • Sreenivasan KR. Turbulent mixing: a perspective. Proc Natl Acad Sci USA. 2019;116(37):18175–18183.
  • Antonia RA, Ould-Rouis M, Anselmet F, et al. Analogy between predictions of Kolmogorov and yaglom. J Fluid Mech. 1997;332:395–409.
  • von Kármán T, Howarth L. On the statistical theory of isotropic turbulence. Proc R Soc. 1938;A 164(917):192–215.
  • Nezu I, Nakagawa H. Turbulence in open-channel flows. Rotterdam: Balkema; 1993.
  • Rotta JC. Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik. 1951;129(6):547–572.
  • Lumley JL, Newman GR. The return to isotropy of homogeneous turbulence. J Fluid Mech. 1977;82(1):161–178.
  • Banerjee S, Krahl R, Durst F, et al. Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J Turbulence. 2007;8:N32.
  • Frohnapfel B, Lammers P, Jovanović J, et al. Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J Fluid Mech. 2007;577:457–466.
  • Sarkar S, Dey S. Turbulent length scales and anisotropy downstream of a wall mounted sphere. J Hydraul Res. 2015;53(5):649–658.
  • Sarkar S, Dey S. Turbulence anisotropy in flow at an entrainment threshold of sediment. J Hydraul Eng. 2015;141(7):06015007.
  • Dey S, Ravi Kishore G, Castro-Orgaz O, et al. Turbulent length scales and anisotropy in submerged turbulent plane offset jets. J Hydraul Eng. 2019;145:04018085.
  • Sarkar S, Ali SZ, Dey S. Turbulence in wall-wake flow downstream of an isolated dunal bedform. Water, MDPI. 2019;11(10):1975.
  • Penna N, Coscarella F, D’Ippolito A, et al. Anisotropy in the free stream region of turbulent flows through emergent rigid vegetation on rough beds. Water. 2020;12(9):2464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.