278
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Enhanced outer peaks in turbulent boundary layer using uniform blowing at moderate Reynolds number

ORCID Icon, , &
Pages 68-95 | Received 22 Jan 2021, Accepted 29 Nov 2021, Published online: 18 Jan 2022

References

  • Kornilov VI. Reduction of turbulent friction by active and passive methods. Thermophys Aeromech. 2005;12(2):175–196.
  • Wood RM. Impact of advanced aerodynamic technology on transportation energy consumption. In: SAE International 2004, Technical Paper, 2004-01-1306. 2004.
  • Kim J. Physics and control of wall turbulence for drag reduction. Phil Trans R Soc A. 2011;369:1396–1411.
  • Kornilov VI. Current state and prospects of researches on the control of turbulent boundary layer by air blowing (Review). Prog Aerospace Sci. 2015;76(2):1–23.
  • Crowe TC, Elger DF, Roberson JA, et al. Engineering fluid mechanics. 8th ed. New York: Wiley; 2005.
  • Bushnell DM. Turbulent drag reduction for external flows. In AIAA, AIAA 21st Aero. Sci Meeting, Reno, Nevada, USA, 1983.
  • Hwang DP. A proof of concept experiment for reducing skin friction by using a Micro-Blowing Technique. In: NASA Tech. Mem. 107315, AIAA, Vol. 0546. 1997.
  • Stroh A, Hasegawa Y, Schlatter P, et al. Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer. J Fluid Mech. 2016;805:303–321.
  • Hwang DP. Review of research into the concept of the microblowing technique for turbulent skin friction reduction. Prog Aero Sci. 1997;40:559–575.
  • Kametani J, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J Fluid Mech. 2011;681:154–172.
  • Kametani J, Fukagata K, Örlü R, et al. Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int J Heat Fluid Flow. 2015;55:132–142.
  • Prandlt L. Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z Angew Math. 1925;5:136–139.
  • Hassanuzzaman G, Merbold S, Motuz V, et al. Experimental investigation of turbulent structures and their control in boundary layer flow. In: Fachtagung Experimentelle Strömungsmechanik. 6–8 September 2016. p. 27:1–6. doi:https://doi.org/10.13140/RG.2.2.22847.46247
  • Hassanuzzaman G, Merbold S, Motuz V, et al. Experimental investigation of active control inturbulent boundary layer using uniform blowing. In: 5th International Conference on Experimental Fluid Mechanics (ICEFM). 2–4 July 2018. p. 1–6.
  • Hasanuzzaman G, Merbold S, Cuvier C, et al. Experimental investigation of turbulent boundary layers at high Reynolds number with uniform blowing, part I: statistics. J Turb. 2020;21(3):129–165. doi:https://doi.org/10.1080/14685248.2020.1740239.
  • Burden HW. The effect of wall porosity on the stability of parallel flows over compliant boundaries. Naval Ship Research and Development Center; 1970. (Tech. Rep. 3330).
  • Hasanuzzaman G. Experimental investigation of turbulent boundary layer with uniform blowing at moderate and high Reynolds numbers [Ph. D. Thesis]. 2021. p. 1–175. doi:https://doi.org/10.26127/BTUOpen-5566
  • Smits AJ, Matheson N, Joubert PN. Low Reynolds number TBL in zero and favorable pressure gradients. J Ship Res. 1983;27(3):147–157.
  • Schlichting H, Gersten K. Boundary-layer theory. 8th ed. New York: Springer; 2016. p. 1–814.
  • Hutchins N, Nickels TB, Marusic I, et al. Hot-wire spatial resolution issues in wall-bounded turbulence. J Fluid Mech. 2009;635:103–136.
  • Ching CY, Djenidi L, Antonia RA. Low Reynolds number effects on the inner region of a turbulent boundary layer. In: Adrian RJ, Durao DFG, Durst F, editors, Developments in laser techniques and applications to fluid mechanics, Proceedings of 7th International Symposium. Vol. 6. 1994, p. 3–15.
  • Prandlt L. Proceedings of the second Congress of applied Mechanics, Zurich, 1926. translated from Aeronautical Research Council paper, Ae. Tech., 1927.
  • Balakumar BJ, Adrian RJ. Large- and very-large-scale motions in channel and boundary-layer flow. Phil Trans R Soc A. 2007;365:665–681.
  • Benedict LH, Gould RD. Towards better uncertainty estimates for turbulence statistics. Exp Fluids. 1996;22:129–136.
  • Clauser FH. The turbulent boundary layer. Vol. 4. New York: Academic Press Inc.; 1956. p. 1–51. (Advances in App. Mech.).
  • Österlund JM, Johansson AV, Nagib HM, et al. Experimental studies of zero pressure-gradient turbulent boundary layer flow [Ph. D. Thesis]. Royal Institute of Technolohy (KTH), Sweden. 1999.
  • Eitel-Amor G. Simulation and validation of a spatially evolving turbulent boundary layer up to Re θ=8300. Int J Heat Fluid Flow. 2014;47:57–69.
  • Örlü R, Schlatter P. Experiments and simulations for zero pressure gradient turbulent boundary layers at moderate Reynolds numbers. Exp Fluids. 2013;43:665–681.
  • Wei T, Fife P, Klewicki J, et al. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. J Fluid Mech. 2005;522:303–327.
  • Alfredsson PH, Örlü R. The diagnostic plot–a litmus test for wall bounded turbulence data. Eur J Mech B/Fluids. 2010;29:403–406.
  • Coles D. The law of the wake in the turbulent boundary layer. J Fluid Mech. 1956;1:191–226.
  • Rotta JC. Über die Theorie der Turbulenten Grenzschichten. Mitt. M.P.I. Ström. Forschung Nr 1 (also available as NACA TM 1344). 1950.
  • Monkewitz PA, Chauhan KA, Nagib HM. Self-consistent high- Reynolds-number asymptotics for zero-pressure-gradient turbulent boundary layers. Phys Fluids. 2007;19(11):115101.
  • Alfredsson PH, Segalini A, Örlü R. A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak. Phys Fluids. 2011;23:041702:1–041702:4.
  • Zanoun E-S, Jehring L, Egbers C. Three measuring techniques for assessing the mean wall skin friction in wall-bounded flows. Thermophys Aeromech. 2014;21:179–190. Zurich, 1926.
  • Örlü RSegalini, Alfredsson PH. High-order generalisation of the diagnostic scaling for turbulent boundary layers. J Turb. 2016;17(7):664–677.
  • Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids. 2002;14:73–76.
  • Fukagata K, Sugiyama K, Kasagi N. On the lower bound of net driving power in controlled duct flows. Physica D. 2009;238(13):1082–1086.
  • Kasagi N, Hasegawa N, Fukagata K. Towards cost effective control of wall turbulence for skin friction drag reduction. In: European Turbulence Conference 12. 2009.
  • Motuz V. Gleichmäßiges Mikro-Ausblasen zur Beeinflussung einer turbulenten Grenzschicht [Ph.D. Thesis], BTU; 2014. Available from: http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-31242 (Advisors: Ch. Egbers, U. Rist, V.I. Kornilov).
  • Horn M, Seitz A, Schneider M. Novel tailored skin single duct concept for HLFC fin application. In: 7th European Conference for Aeronautics and Space Sciences (EUCASS). 2015. p. 1–11.
  • Krishnan KSG, Bertram O. Assessment of a chamberless active HLFC system for the vertical tail plane of a mid-range transport aircraft. In: Deutscher Luft- und Raumfahrtkongress, Doc ID 450080, 1-7, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.