228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A prediction method for spatially decaying freestream turbulence

ORCID Icon &
Pages 124-151 | Received 25 Jan 2021, Accepted 13 Feb 2022, Published online: 27 Feb 2022

References

  • Comings EW, Clapp JT, Taylor JF. Air turbulence and transfer processes. Ind Eng Chem. 1948;40(6):1076–1082.
  • Edwards A, Furber B. The influence of free-stream turbulence on heat transfer by convection from an isolated region of a plane surface in parallel air flow. Proc Inst Mech Eng. 1956;170(1):941–954.
  • Zijnen BVDH. Heat transfer from horizontal cylinders to a turbulent air flow. Appl Sci Res. 1958;7(2-3):205–223.
  • McDonald H, Kreskovsky JP. Effect of free stream turbulence on the turbulent boundary layer. Int J Heat Mass Transf. 1974;17(7):705–716.
  • Simonich JC, Bradshaw P. Effect of free-stream turbulence on heat transfer through a turbulent boundary layer. J Heat Transf. 1978;100(4):671–677.
  • Bearman PW, Morel T. Effect of free stream turbulence on the flow around bluff bodies. Prog Aerosp Sci. 1983;20(2-3):97–123.
  • Blair MF. Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development Part I—experimental data. J Heat Transf. 1983;105(1):33–40.
  • Blair MF. Influence of free-stream turbulence on turbulent boundary layer heat transfer and mean profile development Part II—analysis of results. J Heat Transf. 1983;105(1):41–47.
  • Moffat RJ, Maciejewski P. Heat transfer with very high free stream turbulence. Turbine Engine Hot Section Technology. Conference proceedings, Cleveland (OH); 1985. p. 203–212.
  • Sugawara S, Sato T, Komatsu H. Effect of free stream turbulence on flat plate heat transfer. Int J Heat Mass Transf. 1988;31(1):5–12.
  • Péneau F, Boisson HC, Kondjoyan A. Structure of a flat plate boundary layer subjected to free-stream turbulence. Int J Comput Fluid Dyn. 2004;18(2):175–188.
  • Moradian N, Ting DSK, Cheng S. The effects of freestream turbulence on the drag coefficient of a sphere. Exp Therm Fluid Sci. 2009;33(3):460–471.
  • Akon AF. Effects of turbulence on the separating-reattaching flow above surface-mounted, three-dimensional bluff bodies. PhD Thesis. London (Canada): University of Western Ontario; 2017.
  • Batchelor GK, Townsend AA. Decay of isotropic turbulence in the initial period. Proc R Soc Lond Math Phys Sci. 1948;193(1035):539–558.
  • Batchelor GK, Townsend AA. Decay of turbulence in the final period. Proc R Soc Lond A Math Phys Eng Sci. 1948;194(1039):527–543.
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Mizushina T, Hiromasa U, Nobuyuki U. Effect of free-stream turbulence on mass transfer from a circular cylinder in cross flow. Int J Heat Mass Transf. 1972;15(4):769–780.
  • Maciejewski PK, Moffat RJ. Heat transfer with very high free-stream turbulence: Part I – experimental data. J Heat Transf. 1992;114(4):827–833.
  • Gartshore IS. The effects of free stream turbulence on the drag of rectangular two-dimensional prism. London: University of Western Ontario; 1973. (Boundary layer Wind Tunnel Laboratory Report)
  • Hillier R, Cherry NJ. The effects of stream turbulence on separation bubbles. J Wind Eng Ind Aerodyn. 1981;8(1-2):49–58.
  • Jubayer CM, Hangan H. Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system. J Wind Eng Ind Aerodyn. 2014;134:56–64.
  • Jubayer CM, Hangan H. A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels. J Wind Eng Ind Aerodyn. 2016;153:60–70.
  • Kim Y, Xie ZT. Modelling the effect of freestream turbulence on dynamic stall of wind turbine blades. Comput Fluids. 2016;129:53–66.
  • Hall AA. Measurements of the intensity and scale of turbulence. Aeronautical Research Committee. Great Britain, 1938. (Rept. and Memo. No.1842).
  • Taylor GI. Some recent developments in the study of turbulence. Proceedings of the Fifth International Congress of Applied Mechanics. Cambridge; 1938. p. 294–310.
  • Dryden HL. A review of the statistical theory of turbulence. Q Appl Math. 1943;1(1):7–42.
  • Von KT. Some remarks on the statistical theory of turbulence. Proceedings of Fifth International Congress Applied Mechanics. Cambridge; 1938. p. 347.
  • Batchelor GK, Townsend AA. Decay of vorticity in isotropic turbulence. Proc R Soc Lond A Math Phys Eng Sci. 1947;190(1023):534–550.
  • Comte-Bellot G, Corrsin S. The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech. 1966;25(4):657–682.
  • Hancock PE. The effect of freestream turbulence on turbulent boundary layers. PhD Thesis. London: Imperial College; 1980.
  • Mohamed MS, Larue JC. The decay power law in grid-generated turbulence. J Fluid Mech. 1990;219:195–214.
  • Krogstad PA, Davidson PA. Is grid turbulence Saffman turbulence? J Fluid Mech. 2010;642:373–394.
  • Kurian T, Fransson JH. Grid-generated turbulence revisited. Fluid Dyn Res. 2009;41(2):021403.
  • Kang HS, Chester S, Meneveau C. Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech. 2003;480:129–160.
  • Kops SM DB, Riley JJ. Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys Fluids. 1998;10(9):2125–2127.
  • Ishida T, Davidson PA, Kaneda Y. On the decay of isotropic turbulence. J Fluid Mech. 2006;564:455–475.
  • Torrano I, Tutar M, Martinez-Agirre M, et al. Comparison of experimental and RANS-based numerical studies of the decay of grid-generated turbulence. ASME J Fluids Eng. 2015;137(6):1–30.
  • Wouter JTB. Grid turbulence near the grid. hal-02063500f, 2019:1–17.
  • Sarkar D, Savory E. Numerical modeling of freestream turbulence decay using different commercial computational fluid dynamics codes. ASME J Fluids Eng. 2021;143(4):1–12.
  • Stewart RW, Townsend AA. Similarity and self-preservation in isotropic turbulence. Philos Trans R Soc Lond A Math Phys Sci. 1951;243(867):359–386.
  • Roach PE. The generation of nearly isotropic turbulence by means of grids. Int J Heat Fluid Flow. 1987;8(2):82–92.
  • Lavoie P, Djenidi L, Antonia RA. Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech. 2007;585:395–420.
  • Hurst D, Vassilicos JC. Scalings and decay of fractal-generated turbulence. Phys Fluids. 2007;19(3):1–31.
  • Krogstad PA, Davidson PA. Freely decaying, homogeneous turbulence generated by multi-scale grids. J Fluid Mech. 2011;680:417–434.
  • Taylor GI. The spectrum of turbulence. Proc R Soc Lond A Math Phys Sci. 1938;164(919):476–490.
  • Batchelor GK. The theory of homogeneous turbulence. Q J R Meteorol Soc. 1953;79(341):457–458.
  • Sreenivasan KR. On the scaling of the turbulent energy dissipation rate. Phys Fluids. 1984;27(5):1048–1051.
  • Sirivat A, Warhaft Z. The effect of a passive cross-stream temperature gradient on the evolution of temperature variance and heat flux in grid turbulence. J Fluid Mech. 1983;128:323–346.
  • Sreenivasan KR, Tavoularis S, Henry R, et al. Temperature fluctuations and scales in grid-generated turbulence. J Fluid Mech. 1980;100(3):597–621.
  • Makita H. Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn Res. 1991;8(1-4):53–64.
  • Mydlarski L, Warhaft Z. On the onset of high-Reynolds-number grid-generated wind tunnel turbulence. J Fluid Mech. 1996;320:331–368.
  • Mydlarski L, Warhaft Z. Passive scalar statistics in high-Péclet-number grid turbulence. J Fluid Mech. 1998;358:135–175.
  • Seoud RE. Vassilicos JC dissipation and decay of fractal-generated turbulence. Phys Fluids. 2007;19(10):1–12.
  • Valente P, Vassilicos J. The decay of turbulence generated by a class of multiscale grids. J Fluid Mech. 2011;687:300–340.
  • Thormann A, Meneveau C. Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Phys Fluids. 2014;26(2):025112.
  • Valente PC, Vassilicos JC. Dependence of decaying homogeneous isotropic turbulence on inflow conditions. Phys Lett A. 2012;376(4):510–514.
  • Townsend AA. The measurement of double and triple correlation derivatives in isotropic turbulence. Math Proc Camb Philos Soc. 1947;43(4):560–570.
  • Van Atta CW, Chen WY. Correlation measurements in grid turbulence using digital harmonic analysis. J Fluid Mech. 1968;34(3):497–515.
  • Hearst RJ, Lavoie P. The effect of active grid initial conditions on high Reynolds number turbulence. Exp Fluids. 2015;56(10):1–20.
  • Kistler AL, Vrebalovich T. Grid turbulence at large Reynolds numbers. J Fluid Mech. 1966;26(1):37–47.
  • Lee BE. Some effects of turbulence scale on the mean forces on a bluff-body. J Wind Eng Ind Aerodyn. 1975;1:361–370.
  • Hinze JO. Turbulence. New York (NY): McGraw-Hill; 1975.
  • Makita H, Sassa K. Active turbulence generation in a laboratory wind tunnel. In: Johansson AV, Alfredsson PH, editors. Advances in turbulence 3. Berlin, Heidelberg: Springer; 1991. p. 497–505.
  • Nakamura Y, Ohya Y. The effects of turbulence on the mean flow past square rods. J Fluid Mech. 1983;137:331–345.
  • Hossain MM, Corbin M, Kopp G. Generating atmospheric turbulence by a passive method in a boundary layer wind-tunnel. London: University of Western Ontario; 2018 Unpublished Data, Boundary Layer Wind Tunnel Laboratory.
  • Yeh TT, Atta CW. Spectral transfer of scalar and velocity fields in heated-grid turbulence. J Fluid Mech. 1973;58(2):233–261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.