226
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Dimension reduced turbulent flow data from deep vector quantisers

, , &
Pages 232-264 | Received 23 Aug 2021, Accepted 24 Mar 2022, Published online: 11 Apr 2022

References

  • Momenifar M, Dhariwal R, Bragg AD. Influence of Reynolds number on the motion of settling, bidisperse inertial particles in turbulence. Phys Rev Fluids. 2019;4(5):054301. doi:https://doi.org/10.1103/PhysRevFluids.4.054301.
  • Momenifar M, Bragg AD. Local analysis of the clustering, velocities, and accelerations of particles settling in turbulence. Phys RevFluids. 2020;5(3):034306.
  • Maxey MR. The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J Fluid Mech. 1987;174:441–465.
  • Beard KV, Ochs III HT. Warm-rain initiation: an overview of microphysical mechanisms. J Appl Meteorol. 1993;32(4):608–625.
  • Ongaro TE, Cavazzoni C, Erbacci G, et al. A parallel multiphase flow code for the 3d simulation of explosive volcanic eruptions. Parallel Comput. 2007;33(7-8):541–560.
  • Eghdami M, Barros AP. Extreme orographic rainfall in the eastern andes tied to cold air intrusions. Front Environ Sci. 2019;7:101.
  • Kuo KK, Acharya R. Fundamentals of turbulent and multiphase combustion. Hoboken: John Wiley & Sons; 2012.
  • Abdulqadir SA, Iacovides H, Nasser A. The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy. 2017;119(1):767–799.
  • Moriarty PJ, Holley WE, Butterfield S. Effect of turbulence variation on extreme loads prediction for wind turbines. J Sol Energy Eng. 2002;124(4):387–395.
  • Etkin B. Turbulent wind and its effect on flight. J Aircr. 1981;18(5):327–345.
  • Bianco V, Manca O, Nardini S. Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int J Thermal Sci. 2011;50(3):341–349.
  • Momenifar M, Akhavan-Behabadi M, Nasr M, et al. Effect of lubricating oil on flow boiling characteristics of r-600a/oil inside a horizontal smooth tube. Appl Therm Eng. 2015;91(3):62–72.
  • Nasr M, Akhavan-Behabadi M, Momenifar M, et al. Heat transfer characteristic of r-600a during flow boiling inside horizontal plain tube. Int Commun Heat Mass Transfer. 2015;66(12):93–99.
  • Fan J, Eves J, Thompson H, et al. Computational fluid dynamic analysis and design optimization of jet pumps. Comput Fluids. 2011;46(1):212–217.
  • Hanafizadeh P, Momenifar M, Geimassi AN, et al. Void fraction and wake analysis of a gas-liquid two-phase cross-flow. Multiphase Science and Technology. 2014;26(4):261–286.
  • Diao E, Ding J, Tarokh V. Drasic: distributed recurrent autoencoder for scalable image compression. In: 2020 Data Compression Conference (DCC). IEEE; 2020. p. 3–12.
  • Johnston N, Vincent D, Minnen D, et al. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2018. p. 4385–4393.
  • Wallace GK. The jpeg still picture compression standard. IEEE Trans Consum Electron. 1992;38(1):xviii–xxxiv.
  • Bellard F. Bpg image format. 2015;1. Available from: https://bellardorg/bpg.
  • Glaws A, King R, Sprague M. Deep learning for in situ data compression of large turbulent flow simulations. Phys Rev Fluids. 2020;5(11):114602.
  • Mohan AT, Tretiak D, Chertkov M, et al. Spatio-temporal deep learning models of 3d turbulence with physics informed diagnostics. J Turbul. 2020;21(9–10):484–524.
  • Engelson V, Fritzson D, Fritzson P. Lossless compression of high-volume numerical data from simulations. In: Proc. Data Compression Conference; 2000.
  • Ratanaworabhan P, Ke J, Burtscher M. Fast lossless compression of scientific floating-point data. In: Data Compression Conference (DCC'06). IEEE; 2006. p. 133–142.
  • Cappello F, Di S, Li S, et al. Use cases of lossy compression for floating-point data in scientific data sets. Int J High Perform Comput Appl. 2019;33(6):1201–1220.
  • Coifman RR, Maggioni M. Diffusion wavelets. Appl Comput Harmon Anal. 2006;21(1):53–94.
  • Mallat SG. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell. 1989;11(7):674–693.
  • Karni Z, Gotsman C. Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques; 2000. p. 279–286.
  • Blanc TJ. Analysis and compression of large cfd data sets using proper orthogonal decomposition. Brigham Young University; 2014. Theses and Dissertations. 5303. https://scholarsarchive.byu.edu/etd/5303.
  • Rao KR, Yip P. Discrete cosine transform: algorithms, advantages, applications. San Diego (CA): Academic Press; 2014.
  • Cheng H, Gimbutas Z, Martinsson PG, et al. On the compression of low rank matrices. SIAM J Sci Comput. 2005;26(4):1389–1404.
  • Toderici G, O'Malley SM, Hwang SJ, et al. Variable rate image compression with recurrent neural networks. arXiv preprint arXiv:151106085. 2015.
  • Mentzer F, Agustsson E, Tschannen M, et al. Conditional probability models for deep image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. p. 4394–4402.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444.
  • Müller AC, Guido S, et al. Introduction to machine learning with python: a guide for data scientists. Sebastopol (CA): O'Reilly Media, Inc.; 2016.
  • Hornik K, Stinchcombe M, White H, et al. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–366.
  • Hornik K, Stinchcombe M, White H. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Netw. 1990;3(5):551–560.
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): MIT press; 2016.
  • Maulik R, San O, Rasheed A, et al. Subgrid modelling for two-dimensional turbulence using neural networks. J Fluid Mech. 2019;858:122–144.
  • Ling J, Kurzawski A, Templeton J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. J Fluid Mech. 2016;807:155–166.
  • Beck A, Flad D, Munz CD. Deep neural networks for data-driven les closure models. J Comput Phys. 2019;398:108910.
  • Fukami K, Fukagata K, Taira K. Super-resolution reconstruction of turbulent flows with machine learning. arXiv preprint arXiv:181111328. 2018.
  • Wu JL, Xiao H, Paterson E. Physics-informed machine learning approach for augmenting turbulence models: a comprehensive framework. Phys Rev Fluids. 2018;3(7):074602.
  • Wang H, Raj B. On the origin of deep learning. arXiv preprint arXiv:170207800. 2017.
  • Khan S, Rahmani H, Shah SAA, et al. A guide to convolutional neural networks for computer vision. Synth Lect Comput Vision. 2018;8(1):1–207.
  • Hubel DH, Wiesel TN. Receptive fields and functional architecture of monkey striate cortex. J Physiol (Lond). 1968;195(1):215–243.
  • Fukushima K, Miyake S. Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Competition and cooperation in neural nets. Springer; 1982. p. 267–285.
  • Salehipour H, Peltier WR. Deep learning of mixing by two'atoms' of stratified turbulence. arXiv preprint arXiv:180906499. 2018.
  • Patil AV. Development of deep learning methods for inflow turbulence generation. arXiv preprint arXiv:191006810. 2019.
  • Wang R, Kashinath K, Mustafa M, et al. Towards physics-informed deep learning for turbulent flow prediction. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020. p. 1457–1466.
  • Li Z, Kovachki N, Azizzadenesheli K, et al. Fourier neural operator for parametric partial differential equations. arXiv preprint arXiv:201008895. 2020.
  • Li S, Marsaglia N, Garth C, et al. Data reduction techniques for simulation, visualization and data analysis. In: Computer graphics forum. Vol. 37. Wiley Online Library; 2018. p. 422–447.
  • VanDenOord A, Vinyals O, et al. Neural discrete representation learning. In: Advances in Neural Information Processing Systems. 2017. p. 6306–6315.
  • Bengio Y, Léonard N, Courville A. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv preprint arXiv:13083432. 2013.
  • Razavi A, Vinyals O. Generating diverse high-fidelity images with vq-vae-2. In: Advances in Neural Information Processing Systems. 2019. p. 14866–14876.
  • Betchov R. An inequality concerning the production of vorticity in isotropic turbulence. J Fluid Mech. 1956;1(5):497–504.
  • Pope SB. Turbulent flows. Cambridge, England: Cambridge University Press; 2000.
  • Ireland PJ, Vaithianathan T, Sukheswalla PS, et al. Highly parallel particle-laden flow solver for turbulence research. Comput Fluids. 2013;76(2):170–177.
  • Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning. PMLR; 2015. p. 448–456.
  • He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. p. 770–778.
  • Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.
  • Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13(4):600–612.
  • Buaria D, Bodenschatz E, Pumir A. Vortex stretching and enstrophy production in high reynolds number turbulence. Phys Rev Fluids. 2020 Oct;5(10):104602. doi:https://doi.org/10.1103/PhysRevFluids.5.104602.
  • Tsinober A. An informal introduction to turbulence. New York City: Kluwer Academic Publishers; 2001.
  • Meneveau C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu Rev Fluid Mech. 2011;43(1):219–245. doi:https://doi.org/10.1146/annurev-fluid-122109-160708.
  • Danish M, Meneveau C. Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence. Phys Rev Fluids. 2018 Apr;3(4):044604. doi:https://doi.org/10.1103/PhysRevFluids.3.044604.
  • Carbone M, Bragg AD. Is vortex stretching the main cause of the turbulent energy cascade?. J Fluid Mech. 2020;883:R2.
  • Johnson PL. Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions. Phys Rev Lett. 2020 Mar;124(10):104501. doi:https://doi.org/10.1103/PhysRevLett.124.104501.
  • Tom J, Carbone M, Bragg AD. Exploring the turbulent velocity gradients at different scales from the perspective of the strain-rate eigenframe. J Fluid Mech. 2021;910:A24.
  • Taylor GI, Green AE. Mechanism of the production of small eddies from large ones. Proc R Soc Lond Ser A Math Phys Sci. 1937;158(895):499–521.
  • Brachet ME, Meiron D, Orszag S, et al. The Taylor–Green vortex and fully developed turbulence. J Stat Phys. 1984;34(5):1049–1063.
  • Towns J, Cockerill T, Dahan M, et al. Xsede: accelerating scientific discovery. Comput Sci Eng. 2014 Sept–Oct;16(5):62–74. doi:https://doi.org/10.1109/MCSE.2014.80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.