1,045
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Turbulence modulation by finite-size particles of different diameters and particle–fluid density ratios in homogeneous isotropic turbulence

, , ORCID Icon, , &
Pages 433-453 | Received 05 May 2022, Accepted 25 Jun 2022, Published online: 06 Jul 2022

References

  • Grabowski WW, Wang LP. Growth of cloud droplets in a turbulent environment. Annu Rev Fluid Mech. 2013;45:293–324.
  • Balachandar S, Eaton JK. Turbulent dispersed multiphase flow. Annu Rev Fluid Mech. 2010;42:111–133.
  • Gore R, Crowe CT. Effect of particle size on modulating turbulent intensity. Int J Multiphase Flow. 1989;15:279–285.
  • Kulick JD, Fessler JR, Eaton JK. Particle response and turbulence modification in fully developed channel flow. J Fluid Mech. 1994;277:109–134.
  • Paris AD. Turbulence attenuation in a particle-laden channel flow. Stanford (CA, United States): Stanford University; 2001.
  • Yang T, Shy S. Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements. J Fluid Mech. 2005;526:171–216.
  • Squires KD, Eaton JK. Particle response and turbulence modification in isotropic turbulence. Phys Fluids A Fluid Dyn. 1990;2:1191–1203.
  • Li Y, McLaughlin JB, Kontomaris K, et al. Numerical simulation of particle-laden turbulent channel flow. Phys Fluids. 2001;13:2957–2967.
  • Elghobashi S, Truesdell G. On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification. Phys Fluids A Fluid Dyn. 1993;5:1790–1801.
  • Druzhinin O, Elghobashi S. On the decay rate of isotropic turbulence laden with microparticles. Phys Fluids. 1999;11:602–610.
  • Ferrante A, Elghobashi S. On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys Fluids. 2003;15:315–329.
  • Elgobashi S. An updated classification map of particle-laden turbulent flows. In: Balachandar S, Prosperetti A, editors. IUTAM Symposium on Computational Approaches to Multiphase Flow. Lemont (IL, USA): Springer; 2006. p. 3–10.
  • Tanaka T, Eaton JK. Sub-Kolmogorov resolution particle image velocimetry measurements of particle-laden forced turbulence. J Fluid Mech. 2010;643:177–206.
  • Bellani G, Byron ML, Collignon AG, et al. Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J Fluid Mech. 2012;712:41–60.
  • Tenneti S, Subramaniam S. Particle-resolved direct numerical simulation for gas–solid flow model development. Annu Rev Fluid Mech. 2014;46:277–286.
  • Maxey M. Simulation methods for particulate flows and concentrated suspensions. Annu Rev Fluid Mech. 2017;49:171–193.
  • Pan Y, Banerjee S. Numerical investigation of the effects of large particles on wall-turbulence. Phys Fluids. 1997;9:3786–3807.
  • Shao X, Wu T, Yu Z. Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J Fluid Mech. 2012;693:319–344.
  • Peng C, Ayala OM, Wang LP. A direct numerical investigation of two-way interactions in a particle-laden turbulent channel flow. J Fluid Mech. 2019;875:1096–1144.
  • Tanaka M, Teramoto D. Modulation of homogeneous shear turbulence laden with finite-size particles. J Turbul. 2015;16:979–1010.
  • Tanaka M. Effect of gravity on the development of homogeneous shear turbulence laden with finite-size particles. J Turbul. 2017;18:1144–1179.
  • Yousefi A, Ardekani MN, Brandt L. Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence. J Fluid Mech. 2020;899:A19.
  • Ten Cate A, Derksen JJ, Portela LM, et al. Fully resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J Fluid Mech. 2004;519:233–271.
  • Burton TM, Eaton JK. Fully resolved simulations of particle-turbulence interaction. J Fluid Mech. 2005;545:67–111.
  • Lucci F, Ferrante A, Elghobashi S. Modulation of isotropic turbulence by particles of Taylor length-scale size. J Fluid Mech. 2010;650:5–55.
  • Yeo K, Dong S, Climent E, et al. Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Int J Multiphase Flow. 2010;36:221–233.
  • Cisse M, Homann H, Bec J. Slipping motion of large neutrally buoyant particles in turbulence. J Fluid Mech. 2013;735:R1.
  • Gao H, Li H, Wang LP. Lattice Boltzmann simulation of turbulent flow laden with finite-size particles. Comput Math Appl. 2013;65:194–210.
  • Wang LP, Ayala O, Gao H, et al. Study of forced turbulence and its modulation by finite-size solid particles using the lattice Boltzmann approach. Comput Math Appl. 2014;67:363–380.
  • de Motta JB, Estivalezes JL, Climent E, et al. Local dissipation properties and collision dynamics in a sustained homogeneous turbulent suspension composed of finite size particles. Int J Multiphase Flow. 2016;85:369–379.
  • Schneiders L, Meinke M, Schröder W. Direct particle–fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J Fluid Mech. 2017;819:188–227.
  • Luo K, Wang Z, Li D, et al. Fully resolved simulations of turbulence modulation by high-inertia particles in an isotropic turbulent flow. Phys Fluids. 2017;29:113301.
  • Lucci F, Ferrante A, Elghobashi S. Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys Fluids. 2011;23:025101.
  • D'Humières D, Ginzburg I, Krafczyk M, et al. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil Trans R Soc Lond A. 2002;360:437–451.
  • Eswaran V, Pope SB. An examination of forcing in direct numerical simulations of turbulence. Comput Fluids. 1988;16:257–278.
  • Bouzidi M, Firdaouss M, Lallemand P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluids. 2001;13:3452–3459.
  • Zhao W, Yong WA. Single-node second-order boundary schemes for the lattice Boltzmann method. J Comput Phys. 2017;329:1–15.
  • Caiazzo A, Junk M. Boundary forces in lattice Boltzmann: analysis of momentum exchange algorithm. Comput Math Appl. 2008;55:1415–1423.
  • Brändle de Motta JC, Breugem WP, Gazanion B, et al. Numerical modelling of finite-size particle collisions in a viscous fluid. Phys Fluids. 2013;25:083302.
  • Abdelsamie AH, Lee C. Decaying versus stationary turbulence in particle-laden isotropic turbulence: turbulence modulation mechanism. Phys Fluids. 2012;24:015106.
  • Kidanemariam AG, Chan-Braun C, Doychev T, et al. DNS of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J Phys. 2013;15:025031.
  • Mittal R. Response of the sphere wake to freestream fluctuations. Theor Comput Fluid Dyn. 2000;13:397–419.
  • Zeng L, Balachandar S, Najjar FM. Wake response of a stationary finite-sized particle in a turbulent channel flow. Int J Multiph Flow. 2010;36:406–422.
  • Gotoh T, Fukayama D, Nakano T. Velocity field statistics in homogeneous steady turbulence obtained using a high-resolution direct numerical simulation. Phys Fluids. 2002;14:1065–1081.
  • Ishihara T, Gotoh T, Kaneda Y. Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech. 2009;41:165–180.