387
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Drag reduction using velocity control in Taylor–Couette flows

ORCID Icon, ORCID Icon & ORCID Icon
Pages 467-491 | Received 09 Feb 2022, Accepted 29 Jul 2022, Published online: 06 Aug 2022

References

  • Ricco P, Skote M, Leschziner MA. A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Prog Aerosp Sci. 2021;123:Article ID 100713.
  • Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech. 1994;262:75–110.
  • Koumoutsakos P. Vorticity flux control for a turbulent channel flow. Phys Fluids. 1999;11(2):248–250.
  • Lee C, Kim J, Choi H. Suboptimal control of turbulent channel flow for drag reduction. J Fluid Mech. 1998;358:245–258.
  • Lee C, Kim J, Babcock D, et al. Application of neural networks to turbulence control for drag reduction. Phys Fluids. 1997;9(6):1740–1747.
  • Hammond E, Bewley T, Moin P. Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys Fluids. 1998;10(9):2421–2423.
  • Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Phys Fluids. 2011;23(2):Article ID 025102.
  • Deng BQ, Xu CX, Huang WX, et al. Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. J Turbul. 2014;15(2):122–143.
  • Wang YS, Huang WX, Xu CX. Active control for drag reduction in turbulent channel flow: the opposition control schemes revisited. Fluid Dyn Res. 2016;48(5):Article ID 055501.
  • Stroh A, Frohnapfel B, Schlatter P, et al. A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys Fluids. 2015;27(7):Article ID 075101.
  • Lee J. Opposition control of turbulent wall-bounded flow using upstream sensor. J Mech Sci Technol. 2015;29(11):4729–4735.
  • Iwamoto K, Suzuki Y, Kasagi N. Reynolds number effect on wall turbulence: toward effective feedback control. Int J Heat Fluid Flow. 2002;23(5):678–689.
  • Chang Y, Collis SS, Ramakrishnan S. Viscous effects in control of near-wall turbulence. Phys Fluids. 2002;14(11):4069–4080.
  • Pamiès M, Garnier E, Merlen A, et al. Response of a spatially developing turbulent boundary layer to active control strategies in the framework of opposition control. Phys Fluids. 2007;19(10):Article ID 108102.
  • Rebbeck H, Choi KS. Opposition control of near-wall turbulence with a piston-type actuator. Phys Fluids. 2001;13(8):2142–2145.
  • Rebbeck H, Choi KS. A wind-tunnel experiment on real-time opposition control of turbulence. Phys Fluids. 2006;18(3):Article ID 035103.
  • Deng BQ, Huang WX, Xu CX. Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Reτ=1000. J Turbul. 2016;17(8):758–786.
  • Yao J, Chen X, Hussain F. Composite active drag control in turbulent channel flows. Phys Rev Fluids. 2021;6(5):Article ID 054605.
  • Kametani Y, Fukagata K. Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction. J Fluid Mech. 2011;681:154–172.
  • Xia QJ, Huang WX, Xu CX, et al. Direct numerical simulation of spatially developing turbulent boundary layers with opposition control. Fluid Dyn Res. 2015;47(2):Article ID 025503.
  • Le Dauphin C, Fukagata K. Opposition control of turbulent Taylor–Couette flow. In: Fluids engineering division summer meeting. Vol. 44403; 2011. p. 3895–3903.
  • Greidanus A, Delfos R, Tokgoz S. drag reduction and the effect of bulk fluid rotation. Exp Fluids. 2015;56(5):1–13.
  • Van den Berg TH, Luther S, Lathrop DP, et al. Drag reduction in bubbly Taylor–Couette turbulence. Phys Rev Lett. 2005;94(4):Article ID 044501.
  • Rosenberg BJ, Van Buren T, Fu MK, et al. Turbulent drag reduction over air-and liquid-impregnated surfaces. Phys Fluids. 2016;28(1):Article ID 015103.
  • Srinivasan S, Kleingartner JA, Gilbert JB, et al. Sustainable drag reduction in turbulent Taylor–Couette flows by depositing sprayable superhydrophobic surfaces. Phys Rev Lett. 2015;114(1):Article ID 014501.
  • Andereck CD, Liu S, Swinney HL. Flow regimes in a circular Couette system with independently rotating cylinders. J Fluid Mech. 1986;164:155–183.
  • Dong S. Direct numerical simulation of turbulent Taylor–Couette flow. J Fluid Mech. 2007;587:373–393.
  • Pirro D, Quadrio M. Direct numerical simulation of turbulent Taylor–Couette flow. Euro J Mech B/Fluids. 2008;27(5):552–566.
  • Bilson M, Bremhorst K. Direct numerical simulation of turbulent Taylor–Couette flow. J Fluid Mech. 2007;579:227–270.
  • Grossmann S, Lohse D, Sun C. High-Reynolds number Taylor–Couette turbulence. Annu Rev Fluid Mech. 2016;48:53–80.
  • Ostilla R, Stevens RJ, Grossmann S. direct numerical simulations. J Fluid Mech. 2013;719:14–46.
  • Ostilla-Mónico R, Huisman SG, Jannink TJ. radius ratio dependence. J Fluid Mech. 2014;747:1–29.
  • Ostilla-Mónico R, VanDerPoel EP, Verzicco R, et al. Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys Fluids. 2014;26(1):Article ID 015114.
  • Khawar O, Baig MF, Sanghi S. Taylor–Couette flows undergoing orthogonal rotation subject to thermal stratification. Phys Fluids. 2021;33(3):Article ID 035107.
  • Razzak MA, Khoo BC, Lua KB. Numerical study on wide gap Taylor–Couette flow with flow transition. Phys Fluids. 2019;31(11):Article ID 113606.
  • Razzak MA, Cheong KB, Lua KB. Numerical study of Taylor–Couette flow with longitudinal corrugated surface. Phys Fluids. 2020;32(5):Article ID 053606.
  • van Gils DP, Guzman DN, Sun C, et al. The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. J Fluid Mech. 2013;722:317–347.
  • Spandan V, Verzicco R, Lohse D. Physical mechanisms governing drag reduction in turbulent Taylor–Couette flow with finite-size deformable bubbles. J Fluid Mech. 2018;849.
  • Zhao MX, Yu M, Cao T. Drag reduction in turbulent Taylor–Couette flow by axial oscillation of inner cylinder. Phys Fluids. 2021;33(5):Article ID 055123.
  • Naim MS, Baig MF. Turbulent drag reduction in Taylor–Couette flows using different super-hydrophobic surface configurations. Phys Fluids. 2019;31(9):Article ID 095108.
  • Ogino K, Mamori H, Fukushima N, et al. Direct numerical simulation of Taylor–Couette turbulent flow controlled by a traveling wave-like blowing and suction. Int J Heat Fluid Flow. 2019;80:Article ID 108463.
  • Fukagata K, Kasagi N. Drag reduction in turbulent pipe flow with feedback control applied partially to wall. Int J Heat Fluid Flow. 2003;24(4):480–490.
  • Park J, Choi H. Machine-learning-based feedback control for drag reduction in a turbulent channel flow. J Fluid Mech. 2020;904.
  • Han BZ, Huang WX. Active control for drag reduction of turbulent channel flow based on convolutional neural networks. Phys Fluids. 2020;32(9):Article ID 095108.
  • Cheng L, Armfield S. A simplified marker and cell method for unsteady flows on non-staggered grids. Int J Numer Methods Fluids. 1995;21(1):15–34.
  • Khawar O, Baig M, Sanghi S. Counter-rotating Taylor–Couette flows with radial temperature gradient. Int J Heat Fluid Flow. 2022;95:Article ID 108980.
  • Wendt F. Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern. Arch Appl Mech. 1933;4(6):577–595.
  • Bilgen E, Boulos R. Functional dependence of torque coefficient of coaxial cylinders on gap width and reynolds numbers. J Fluids Eng. 1973;95(1):122–126.
  • Fukagata K, Iwamoto K, Kasagi N. Contribution of reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids. 2002;14(11):L73–L76.
  • Chernyshenko SI, Baig MF. The mechanism of streak formation in near-wall turbulence. J Fluid Mech. 2005;544:99–131.
  • Wallace JM. Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech. 2016;48:131–158.
  • Khan HH, Anwer SF, Hasan N, et al. The organized motion of characterized turbulent flow at low Reynolds number in a straight square duct. SN Appl Sci. 2020;2(4):1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.