238
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of slip length on flow dynamics and heat transport in two-dimensional Rayleigh–Bénard convection

ORCID Icon & ORCID Icon
Pages 492-514 | Received 25 Jul 2022, Accepted 18 Sep 2022, Published online: 30 Sep 2022

References

  • Tritton DJ. Internally heated convection in the atmosphere of Venus and in the laboratory. Nature. 1975;257:110–112.
  • Davis RE. Lagrangian ocean studies. Annu Rev Fluid Mech. 1991;23:43–64.
  • Moore WB, Webb AAG. Heat-pipe earth. Nature. 2013;501:501–505.
  • Yang Y, Verzicco R, Lohse D. Vertically bounded double diffusive convection in the finger regime: comparing no-slip versus free-slip boundary conditions. Phys Rev Lett. 2016;117(18):184501.
  • Huang M, Wang Y, Bao Y, et al. Heat transfer and temperature boundary-layer profiles in closed turbulent Rayleigh–Bénard convection with slippery conducting surfaces. J Fluid Mech. 2022;943:A2.
  • Ahlers G. Turbulent convection. Physics. 2009;2:74:1–74:7.
  • Ahlers G, Grossmann S, Lohse D. Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev Mod Phys. 2009;81(2):503–537.
  • Lohse D, Xia KQ. Small-scale properties of turbulent Rayleigh–Bénard convection. Annu Rev Fluid Mech. 2010;42(1):335–364.
  • Goluskin D, Johnston H, Flierl GR, et al. Convectively driven shear and decreased heat flux. J Fluid Mech. 2014;759:360–385.
  • Van Der Poel EP, Ostilla-Mónico R, Verzicco R, et al. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh–Bénard convection. Phys Rev E. 2014;90(1):013017.
  • Von Hardenberg J, Goluskin D, Provenzale A, et al. Generation of large-scale winds in horizontally anisotropic convection. Phys Rev Lett. 2015;115(13):134501.
  • Wang Q, Chong KL, Stevens RJAM, et al. From zonal flow to convection rolls in Rayleigh–Bénard convection with free-slip plates. J Fluid Mech. 2020;905:A21.
  • Wang Q, Verzicco R, Lohse D, et al. Multiple states in turbulent large-aspect-ratio thermalconvection: what determines the number of convection rolls? Phys Rev Lett. 2020;125:074501.
  • Wang B, Wang Q, Wan ZH, et al. The influence of aspect ratio on flow states in the buoyancy-driven turbulence with free slip boundaries. Int J Heat Mass Transf. 2021;178:121639.
  • Zhang X, Van Gils DP, Horn S, et al. Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys Rev Lett. 2022;124:084505.
  • Wedi M, Moturi VM, Funfschilling D. Experimental evidence for the boundary zonal flow in rotating Rayleigh–Bénard convection. J Fluid Mech. 2022;939:A14.
  • Kunnen RPJ. The geostrophic regime of rapidly rotating turbulent convection. J Turbul. 2021;22(4–5):267–296.
  • Zhang X, Ecke RE, Shishkina O. Boundary zonal flows in rapidly rotating turbulent thermal convection. J Fluid Mech. 2021;915:A62.
  • Heimpel M, Aurnou J, Wicht J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature. 2005;438:193–196.
  • Kaspi Y, Galanti E, Hubbard WB, et al. Jupiter's atmospheric jet streams extend thousands of kilometres deep. Nature. 2018;555:223–226.
  • Lin Z, Hahm TS, Lee WW, et al. Turbulent transport reduction by zonal flows: massively parallel simulations. Science. 1998;281:1835–1837.
  • Huang M, He X. Heat transport in horizontally periodic and confined Rayleigh–Bénard convection with no-slip and free-slip plates. Theor App Mech Lett. 2022;12:100330.
  • Reiter P, Zhang X, Stepanov R, et al. Generation of zonal flows in convective systems by travelling thermal waves. J Fluid Mech. 2021;913:A13.
  • Ching ES, Tam WS. Aspect-ratio dependence of heat transport by turbulent Rayleigh–Bénard convection. J Turbul. 2006;7:1–10.
  • Park S, Lee C. Analysis of coherent structures in Rayleigh–Bénard convection. J Turbul. 2015;16(12):1162–1178.
  • Qiu XL, Xia KQ, Tong P. Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J Turbul. 2005;6:1–13.
  • Pandey A, Verma MK. Scaling of large-scale quantities in Rayleigh–Bénard convection. Phys Fluids. 2016;28:095105.
  • Ahlers G, He X, Funfschilling D, et al. Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃0.8 and 3×1012≲ Ra ≲1015: Aspect ratio Γ=0.50. New J Phys. 2012;14(10):103012.
  • He X, Funfschilling D, Nobach H, et al. Transition to the ultimate state of turbulent Rayleigh–Beńard convection. Phys Rev Lett. 2012;108:024502.
  • Wen B, Goluskin D, Leduc M, et al. Steady Rayleigh–Bénard convection between stress-free boundaries. J Fluid Mech. 2020;905:R4.
  • VanDerPoel EP, Ostilla-Mónico R, Verzicco R, et al. Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection. Phys Rev Lett. 2015;115(15):154501.
  • He YH, Xia KQ. Temperature fluctuation profiles in turbulent thermal convection: a logarithmic dependence versus a power-Law dependence. Phys Rev Lett. 2019;122:014503.
  • Pandey A. Thermal boundary layer structure in low-Prandtl-number turbulent convection. J Fluid Mech. 2021;910:A13.
  • Reiter P, Shishkina O, Lohse D, et al. Crossover of the relative heat transport contributions of plume ejecting and impacting zones in turbulent Rayleigh–Bénard convection. Europhys Lett. 2021;134(3):34002.
  • Blass A, Verzicco R, Lohse D, et al. Flow organisation in laterally unconfined Rayleigh–Bénard turbulence. J Fluid Mech. 2021;906:A26.
  • Zhu X, Mathai V, Stevens RJ, et al. Transition to the ultimate regime in two-dimensional Rayleigh–Bénard convection. Phys Rev Lett. 2018;120(14):144502.
  • Wei P, Ahlers G. On the nature of fluctuations in turbulent Rayleigh–Bénard convection at large Prandtl numbers. J Fluid Mech. 2016;802:203–244.
  • Xie YC, Cheng BYC, Hu YB, et al. Universal fluctuations in the bulk of Rayleigh–Bénard turbulence. J Fluid Mech. 2019;878:R1.
  • Ahlers G, Bodenschatz E, Funfschilling D, et al. Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys Rev Lett. 2012;109(11):114501.
  • Ahlers G, Bodenschatz E, He X. Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J Fluid Mech. 2014;758:436–467.
  • He X, van Gils DPM, Bodenschatz E, et al. Logarithmic spatial variations and universal  power spectra of temperature fluctuations in turbulent Rayleigh–Bénard convection. Phys Rev Lett. 2014;112(17):174501.
  • He X, Bodenschatz E, Ahlers G. Universal scaling of temperature variance in Rayleigh–Bénard convection near the transition to the ultimate state. J Fluid Mech. 2022;931:A7.
  • He X, Bodenschatz E, Ahlers G. A model for universal spatial variations of temperature fluctuations in turbulent Rayleigh–Bénard convection. Theor App Mech Lett. 2021;11:100237.
  • Shishkina O, Horn S, Wagner S, et al. Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys Rev Lett. 2015;114(11):114302.
  • Shishkina O, Horn S, Emran M, et al. Mean temperature profiles in turbulent thermal convection. Phys Rev Fluids. 2017;2(11):113502.
  • Wang Y, Xu W, He X, et al. Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. J Fluid Mech. 2018;840:408–431.
  • Choi CH, Kim CJ. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys Rev Lett. 2006;96:066001.
  • Fischer PF. An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J Comput Phys. 1997;133(1):84–101.
  • Scheel JD, Emran MS, Schumacher J. Resolving the fine-scale structure in turbulent Rayleigh–Bénard convection. New J Phys. 2013;15(11):113063.
  • Shishkina O, Stevens RJAM, Grossmann S, et al. Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J Phys. 2010;12(7):075022.
  • Winchester P, Dallas V, Howell PD. Zonal flow reversals in two-dimensional Rayleigh–Bénard convection. Phys Rev Fluids. 2021;6(3):033502.
  • Sondak D, Smith LM, Waleffe F. Optimal heat transport solutions for Rayleigh–Bénard convection. J Fluid Mech. 2015;784:565–595.
  • Jin TC, Wu JZ, Zhang YZ, et al. Shear-induced modulation on thermal convection over rough plates. J Fluid Mech. 2022;936:A28.
  • Wang Y, He X, Tong P. Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh–Bénard convection. Phys Rev Fluids. 2016;1:082301(R).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.