198
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Influence of turbulent structure on the heat transfer of Rayleigh–Bénard convection with triangular roughness element

ORCID Icon, &
Pages 549-566 | Received 29 May 2022, Accepted 06 Nov 2022, Published online: 15 Nov 2022

References

  • Shen Y, Tong P, Xia KQ. Turbulent convection over rough surfaces. Phys Rev Lett. 1996;76:908–911.
  • Du YB, Tong P. Enhanced heat transport in turbulent convection over a rough surface. Phys Rev Lett. 1998;81:987–990.
  • Du YB, Tong P. Turbulent thermal convection in a cell with ordered rough boundaries. J Fluid Mech. 2000;407:57–84.
  • Ciliberto S, Laroche C. Random roughness of boundary increases the turbulent convection scaling exponent. Phys Rev Lett. 1999;82:3998–4001.
  • Roche PE, Castaing B, Chabaud B, et al. Observation of the 12 power law in Rayleigh–Bénard convection. Phys Rev E. 2001;63:Article ID 045303.
  • Qiu XL, Xia KQ, Tong P. Experimental study of velocity boundary layer near a rough conducting surface in turbulent natural convection. J Turbul. 2005;6:Article ID N30.
  • Sun C, Ren LY, Song H, et al. Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. J Fluid Mech. 2005;542:165–174.
  • Zhou Q, Xia K-Q. Universality of local dissipation scales in buoyancy-driven turbulence. Phys Rev Lett. 2010;104:Article ID 124301.
  • Tisserand JC, Creyssels M, Gasteuil Y, et al. Comparison between rough and smooth plates within the same Rayleigh–Bénard cell. Phys Fluids. 2011;23:Article ID 015105.
  • Salort J, Liot O, Rusaouen E, et al. Thermal boundary layer near roughnesses in turbulent Rayleigh–Bénard convection: flow structure and multistability. Phys Fluids. 2014;26:Article ID 015112.
  • Wei P, Chan TS, Ni R, et al. Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J Fluid Mech. 2014;740:28–46.
  • Xie YC, Xia KQ. Turbulent thermal convection over rough plates with varying roughness geometries. J Fluid Mech. 2017;825:573–599.
  • Jiang H, Zhu X, Mathai V, et al. Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces. Phys Rev Lett. 2018;120:Article ID 044501.
  • Stringano G, Pascazio G, Vwezicco R. Turbulent thermal convection over grooved plates. J Fluid Mech. 2006;557:307–336.
  • Shishkina O, Wagner C. Modelling the influence of wall roughness on heat transfer in thermal convection. J Fluid Mech. 2011;686:568–582.
  • Wagner S, Shishkina O. Heat flux enhancement by regular surface roughness in turbulent thermal convection. J Fluid Mech. 2015;763:109–135.
  • Zhu X, Stevens RJAM, Verzicco R, et al. Roughness-facilitated local 1/2 scaling does not imply the onset of the ultimate regime of thermal convection. Phys Rev Lett. 2017;119:Article ID 154501.
  • Zhang YZ, Sun C, Bao Y, et al. How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. J Fluid Mech. 2018;836:Article ID R2.
  • Dong DL, Wang BF, Dong YH, et al. Influence of spatial arrangements of roughness elements on turbulent Rayleigh–Bénard convection. Phys Fluids. 2020;32:Article ID 045114.
  • Belkadi M, Sergent A, Fraigneau Y, et al. On the role of roughness valleys in turbulent Rayleigh–Bénard convection. J Fluid Mech. 2021;923:Article ID A6.
  • Moisy F, Jiménez J. Geometry and clustering of intense structures in isotropic turbulence. J Fluid Mech. 2004;513:111–133.
  • Suzuki K, Kawasaki T, Furumachi N, et al. A thermal immersed boundary lattice Boltzmann method for moving-boundary flows with Dirichlet and Neumann conditions. Int J Heat Mass Transf. 2018;121:1099–1117.
  • Xia Y, Fu Y, Li J, et al. Numerical simulation of turbulent thermal convection based on LBM. Mod Phys Lett B. 2021;35(3):Article ID 2150070.
  • Cheng C, Li W, Lozano-Durán A, et al. Uncovering townsends wall-attached eddies in low-Reynolds-number wall turbulence. J Fluid Mech. 2020;889:Article ID A29.
  • Dong S, Huang Y, Yuan X, et al. The coherent structure of the kinetic energy transfer in shear turbulence. J Fluid Mech. 2020;892:Article ID A22.
  • Qian YH, D'Humires D, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17:479–484.
  • Qian YH, Succi S, Orszag SA. Recent advances in lattice Boltzmann computing. Annu Rev Comput Phys. 1995;3:195–242.
  • Xia Y, Qiu X, Qian Y. Numerical simulation of two-dimensional turbulence based on immersed boundary lattice Boltzmann method. Comput Fluids. 2019;195:Article ID 104321.
  • Xia Y, Qian Y. Lattice Boltzmann simulation for forced two-dimensional turbulence. Phys Rev E. 2014;90:Article ID 023004.
  • Peskin CS. The immersed boundary method. Acta Numer. 2002;11:479–517.
  • Niu X, Shu C, Chew Y, et al. A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows. Phys Lett A. 2006;354(3):173–182.
  • Wang Z, Fan J, Luo K. Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. Int J Multiphase Flow. 2008;34(3):283–302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.