180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modeling rough walls from surface topography to double averaged Navier-Stokes computation

ORCID Icon
Pages 36-56 | Received 08 Jul 2022, Accepted 20 Jan 2023, Published online: 03 Feb 2023

References

  • Knopp T, Eisfeld B, Calvo J. A new extension for k−ω turbulence models to account for wall roughness. Int J Heat Fluid Flow. 2009;30:54–65.
  • Aupoix B, Spalart P. Extensions of the Spalart–Allmaras turbulence model to account for wall roughness. Int J Heat Fluid Flow. 2003;24:454–462.
  • Hellsten A, Laine S. Extension of the k−ω shear-stress transport turbulence model for rough-wall flows. AIAA J. 1998 Sep;36(9):1728–1729.
  • Nikuradse J. Laws of flows in rough pipes. Washington: NACA; 1937. Technical Memorandum 1292.
  • Musker A. Universal roughness functions for naturally-occuring surfaces. Trans Can Soc Mech Eng. 1980-81;6(1):1–6.
  • Sigal A, Danberg J. New correlation of roughness density effect on the turbulent boundary layer. AIAA J. 1990 Mar;28(3):554–556.
  • van Rij J, Belnap B, Ligrani P. Analysis and experiments on three-dimensional, irregular surface roughness. J Fluid Eng. 2002 Sep;124:671–677.
  • Schultz M, Flack K. Turbulent boundary layers on a systematically varied rough wall. Phys Fluid. 2009;21:Article ID 15104.
  • Forooghi P, Stroh A, Magagnato F, et al. Toward a universal roughness correlation. J Fluids Eng. 2017 Aug;139(12):Article ID 121201.
  • Chung D, Hutchins N, Schultz MP, et al. Predicting the drag of rough surfaces. Annu Rev Fluid Mech. 2021;53(1):439–471. doi:10.1146/annurev-fluid-062520-115127.
  • Kadivar M, Tormey D, McGranaghan G. A review on turbulent flow over rough surfaces: fundamentals and theories. Int J Thermofluid. 2021 May;10:Article ID 100077. doi:10.1016/j.ijft.2021.100077.
  • Schlichting H. Experimental investigation of the problem of surface roughness. Washington: NACA; 1937. Technical Memorandum 823.
  • Robertson J. Surface resistance as a function of the concentration and size of roughness elements [dissertation]. Lowa: State University of Iowa; 1961.
  • Finson M. A Reynolds stress model for boundary layer transition with application to rough surfaces. Wakefield, Massachusetts: Physical Sciences Inc.; 1975. Interim scientific report.
  • Finson M. A model for rough wall turbulent heating and skin friction [AIAA Paper 82-0199 20th Aerospace Science Meeting, Orlando, FL]; 1982.
  • Christoph G, Pletcher R. Predictions of rough-wall skin friction and heat transfer. AIAA J. 1983 Apr;21(4):509–515.
  • Christoph G, Fiore A. Numerical simulation of flow over rough surfaces, including effects of shock waves. Air Force Wright Aeronautical Laboratories; 1983. AFWAL-TR-83-3071.
  • Whitaker S. Flows in porous media I: A theoretical derivation of Darcy's law. Transp Porous Media. 1986;1:3–25.
  • Taylor R, Coleman H, Hodge B. Prediction of turbulent rough-wall skin friction using a discrete element approach. J Fluids Eng. 1985 Jun;107:251–257.
  • Hosni M, Coleman H, Taylor R. Measurements and calculations of fluid dynamic characteristics of rough-wall turbulent boundary layer flows. J Fluids Eng. 1993 Sep;115:383–388.
  • McClain S, Collins S, Hodge B, et al. The importance of the mean elevation in predicting skin friction for flow over closely packed surface roughness. J Fluids Eng. 2006 May;128:579–586.
  • Stripf M, Schulz A, Bauer HJ. Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J Turbomach. 2008 Feb;130(2):Article ID 21003. doi:10.1115/1.2750675.
  • Hanson D, Kinzel M, McClain S. Validation of the discrete element roughness method for predicting heat transfer on rough surfaces. Int J Heat Mass Transf. 2019 Jun;136:1217–1232. doi:10.1016/j.ijheatmasstransfer.2019.03.062.
  • Aupoix B. Revisiting the discrete element method for predictions of flows over rough surfaces. J Fluids Eng. 2016 Mar;138(8):Article ID 31205.
  • Whitaker S. The forchheimer equation: a theoretical development. Transp Porous Media. 1996;25:27–61.
  • Chedevergne F, Forooghi P. On the importance of the drag coefficient modelling in the double averaged navier-stokes equations for prediction of the roughness effects. J Turbul. 2020 Aug;21(8):463–482. doi:10.1080/14685248.2020.1817465.
  • Chedevergne F. A double-averaged navier-stokes k−ω turbulence model for wall flows over rough surfaces with heat transfer. J Turbul. 2021 Sep;22(11):713–734. doi:10.1080/14685248.2021.1973014.
  • Menter F. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994 Aug;32(8):1598–1605.
  • Hill J, Voisinet R. Measurements of surface roughness effects on the heat transfer to slender cones at Mach 10 [AIAA paper 80-0345, 18th Aerospace Sciences Meeting, Pasadena, California]; 1980.
  • Holden M. Experimental studies of surface roughness, entropy swallowing and boundary layer transition effects on the skin friction and heat transfer distribution in high speed flows [AIAA paper 82-0034, 20th Aerospace Sciences Meeting, Orlando, FL]; 1982.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over resolved and modeled rough walls with irregularly distributed roughness. Int J Heat Fluid Flow. 2019;77:1–18. Available from: https://www.sciencedirect.com/science/article/pii/S0142727X17311232.
  • Kuwata Y, Suga K, Kawaguchi Y. An extension of the second moment closure model for turbulent flows over macro rough walls. Int J Heat Fluid Flow. 2019 Jun;77:186–201. doi:10.1016/j.ijheatfluidflow.2019.04.003.
  • Žukauskas A. Heat transfer from tubes in crossflow. Advances in Heat Transfer. 1972;8:93–160. J.P. Hartnett and T.F. Irvine.
  • Prandtl L. Über Flüssigkeitsbewegungen bei sehr kleiner reibung. In: Krazer A, editor. Verhandlungen des DrittenInternationalen Mathematiker-Kongresses in Heidelberg; Leibzig: Teubner; 1904. p. 484–491.
  • Toussaint D, Chedevergne F, Léon O. Analysis of the different sources of stress acting in fully rough turbulent flows over geometrical roughness elements. Phys Fluid. 2020 Jul;32(7):Article ID 075107. doi:10.1063/5.0010771.
  • Squire D, Morrill-Winter C, Hutchins N, et al. Comparison of turbulent boundary layers over smooth and rough surfaces up to high reynolds numbers. J Fluid Mech. 2016;795:210–240.
  • Croner E, Léon O, Chedevergne F. Industrial use of equivalent sand grain height models for roughness modelling in turbomachinery. In: 55th 3AF International Conference on Applied Conference; Poitiers, France; Apr 2021. Available from: https://hal.archives-ouvertes.fr/hal-03228846.
  • Thakkar M, Busse A, Sandham N. Surface correlations of hydrodynamic drag for transitionally rough engineering surfaces. J Turbul. 2016 Nov;18(2):138–169. doi:10.1080/14685248.2016.1258119.
  • Finson M, Clarke A, Wu P. Effect of surface roughness character on turbulent boundary layer heating. Physical Sciences Inc.; 1980. Final Report F49620-78-C-0028.
  • Perry A, Schofield W, Joubert P. Rough wall turbulent boundary layers. J Fluid Mech. 1969;37:383–413.
  • Jackson P. On the displacement height in the logarithmic velocity profile. J Fluid Mech. 1981;111:15–25.
  • McClain S, Hodge B, Bons J. Predicting skin friction and heat transfer for turbulent flow over real gas turbine surface roughness using the discrete element method. J Turbomach. 2004 Apr;126:259–267.
  • Raupach M, Antonia R, Rajagopalan S. Rough-wall turbulent boundary layers. Appl Mech Rev. 1991 Jan;44(1):1–25.
  • Townsend A. The structure of turbulent shear flow. 2nd ed. Cambridge: Cambridge University Press; 1976. (Cambridge Monographs on Mechanics and Applied Mathematics).
  • Jiménez J. Turbulent flows over rough walls. Annu Rev Fluid Mech. 2004;36:173–196.
  • Flack K, Schultz M, Connelly J. Examination of a critical roughness height for outer layer similarity. Phys Fluid. 2007;19(095104):1–9.
  • Léon O, Reulet P, Chedevergne F. Aerodynamic and heat transfer effects of distributed hemispherical roughness elements inducing step changes in a turbulent boundary layer. Int J Heat Fluid Flow. 2020 Oct;85:Article ID 108672. doi:10.1016/j.ijheatfluidflow.2020.108672.
  • Flack K, Schultz M. Review of hydraulic roughness scales in the fully rough regime. J Fluid Eng. 2010;132:041203-1–041203-10.
  • Boyle RJ, Stripf M. Simplified approach to predicting rough surface transition. J Turbomach. 2009 Jul;131(4):Article ID 41020. doi:10.1115/1.3072521.
  • Grigson C. Drag losses of new ships caused by hull finish. J Ship Res. 1992 Jun;36(2):182–196.
  • Flack K, Schultz M, Barros J. Skin friction measurements of systematically-varied roughness: probing the role of roughness amplitude and skewness. Flow Turbul Combust. 2019 Dec;104(2–3):317–329. doi:10.1007/s10494-019-00077-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.