1,554
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effect of high skewness and kurtosis on turbulent channel flow over irregular rough walls

ORCID Icon & ORCID Icon
Pages 57-81 | Received 30 Sep 2022, Accepted 19 Jan 2023, Published online: 12 Feb 2023

References

  • Nikuradse J. Strömungsgesetze in Rauhen Rohren. VDI Forschungsheft. 1933;361:1–22.
  • Schlichting H. Experimentelle untersuchungen zum rauhigkeitsproblem. Ingenieur-Archiv. 1936;7(1):1–34.
  • Colebrook CF, White CM. Experiments with fluid friction in roughened pipes. Proc Roy Soc Lond A. 1937;161(906):367–381.
  • Schlichting H, Gersten K. Boundary layer theory. 8th revised and enlarged edition, Berlin Heidelberg: Springer; 2003.
  • Chung D, Hutchins N, Schultz MP, et al. Predicting the drag of rough surfaces. Annu Rev Fluid Mech. 2021;53(1):439–471.
  • Kadivar M, Tormey D, McGranaghan G. A review on turbulent flow over rough surfaces: fundamentals and theories. Int J Thermofluid. 2021;10:100077.
  • Blateyron F. Characterisation of areal surface texture. Springer; 2013. Chapter The Areal Field Parameters; p. 15–43.
  • Jelly TO, Busse A. Reynolds number dependence of Reynolds and dispersive stresses in turbulent channel flow past irregular near-Gaussian roughness. Int J Heat Fluid Flow. 2019;80:108485.
  • Flack KA, Schultz MP. Roughness effects on wall-bounded turbulent flows. Physics Fluids. 2014;26(10):101305.
  • Thakkar M, Busse A, Sandham ND. Surface correlation of hydrodynamic drag for transitionally rough engineering surfaces. J Turbul. 2017;18(2):138–169.
  • Forooghi P, Stroh A, Magagnato F, et al. Toward a universal roughness correlation. J Fluids Eng. 2017;139(12):121201.
  • Jelly TO, Busse A. Reynolds and dispersive stress contributions above highly skewed roughness. J Fluid Mech. 2018;852:710–724.
  • Busse A, Jelly TO. Influence of surface anisotropy on turbulent flow over irregular roughness. Flow Turbul Combust. 2020;104(2–3):331–354.
  • Sarakinos S, Busse A. Influence of spatial distribution of roughness elements on turbulent flow past a biofouled surface. In: Proceedings of the 11th International Symposium on Turbulence and Shear Flow Phenomena(TSFP11); 2019.
  • Busse A, Zhdanov O. Direct numerical simulations of turbulent channel flow over ratchet roughness. Flow Turbul Combust. 2022;109(4):1195–1213.
  • Flack KA, Schultz MP, Barros JM. Skin friction measurements of systematically-varied roughness: probing the role of roughness amplitude and skewness. Flow Turbul Combust. 2019;104(2–3):317–329.
  • Jiménez J. Turbulent flow over rough walls. Annu Rev Fluid Mech. 2004;36(1):173–196.
  • Napoli E, Armenio V, De Marchis M. The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J Fluid Mech. 2008;613:385–394.
  • Schultz MP, Flack KA. Turbulent boundary layers on a systematically varied rough wall. Physics Fluids. 2009;21(1):015104.
  • Yuan J, Piomelli P. Estimation and prediction of the roughness function on realistic surfaces. J Turbul. 2014;15(6):350–365.
  • Pearson K. Mathematical contributions to the theory of evolution. XIX. second supplement to a memoir on skew variation. Philos Trans Royal Soc A. 1916;216:429–457.
  • Monty JP, Dogan E, Hanson R, et al. An assessment of the ship drag penalty arising from light calcareous tubeworm fouling. Biofouling. 2016;32(4):451–464.
  • Sarakinos S, Busse A. Investigation of rough-wall turbulence over barnacle roughness with increasing solidity using direct numerical simulations. Phys Rev Fluids. 2022;7(6):064602.
  • Klaassen CA, Mokveld PJ, van Es B. Squared skewness minus kurtosis bounded by 186/125 for unimodal distributions. Stat Probab Lett. 2000;50(2):131–135.
  • Coceal O, Thomas TG, Castro IP, et al. Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary Layer Meteorol. 2006;121(3):491–519.
  • Orlandi P, Leonardi S. DNS of turbulent channel flows with two- and three-dimensional roughness. J Turbul. 2009;7:53.
  • Leonardi S, Castro IP. Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech. 2010;651:519–539.
  • Volino RJ, Dchultz MP, Flack KA. Turbulence structure in boundary layers over periodic two- and three-dimensional roughness. J Fluid Mech. 2011;676:172–190.
  • MacDonald M, Ooi A, García-Mayoral R, et al. Direct numerical simulation of high aspect ratio spanwise-aligned bars. J Fluid Mech. 2018;843:126–155.
  • Sharma A, García-Mayoral R. Turbulent flows over dense filament canopies. J Fluid Mech. 2020;888(A2):1–36.
  • Sharma A, García-Mayoral R. Scaling and dynamics of turbulence over sparse canopies. J Fluid Mech. 2020;888(A1):1–32.
  • Patir N. A numerical procedure for random generation of rough surfaces. Wear. 1978;47(2):263–277.
  • Bakolas V. Numerical generation of arbitrarily oriented non-gaussian three-dimensional rough surfaces. Wear. 2003;254(5–6):546–554.
  • Busse A, Lützner M, Sandham ND. Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput Fluids. 2015;116:129–147.
  • Jelly TO, Busse A. Multi-scale anisotropic rough surface algorithm: technical documentation and user guide. Glasgow,UK: University of Glasgow; 2019.
  • Johnson NL. Systems of frequency curves generated by methods of translation. Biometrika. 1949;36(1-2):149–176.
  • Hill ID, Hill R, Holder RL. Algorithm as 99: fitting Johnson curves by moments. J R Stat Soc Ser C Appl Stat. 1976;25(2):180–189.
  • Watson W, Spedding TA. The time series modelling of non-Gaussian engineering processes. Wear. 1982;83(2):215–231.
  • Johnson ME, Lowe VW. Bounds on the sample skewness and kurtosis. Technometrics. 1979;21(3):377–378.
  • Busse A, Thakkar M, Sandham ND. Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J Fluid Mech. 2017;810:196–224.
  • Thakkar M, Busse A, Sandham ND. Direct numerical simulation of turbulent channel flow over a surrogate for Nikuradse-Type roughness. J Fluid Mech. 2018;837(R1):1–11.
  • Yang J, Balaras E. An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries. J Comput Phys. 2006;215(1):12–40.
  • Busse A, Lützner M, Sandham ND. Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput Fluids. 2015;116:129–147.
  • MacDonald M, Chan L, Chung D, et al. Turbulent flow over transitionally rough surfaces with varying roughness densities. J Fluid Mech. 2016;804:130–161.
  • Kuwata Y, Kawaguchi Y. Direct numerical simulation of turbulence over systematically varied irregular rough surfaces. J Fluid Mech. 2019;862:781–815.
  • Raupach MR, Shaw RH. Averaging procedures for flow within vegetation canopies. Boundary Layer Meteorol. 1982;22(1):79–90.
  • Jelly T, Ramani A, Nugroho B, et al. Impact of spanwise effective slope upon rough-wall turbulent channel flow. J Fluid Mech. 2022;951:A1.
  • Scaggs WF, Taylor RP, Coleman HW. Measurement and prediction of rough wall effects on friction factor–uniform roughness results. J Fluids Eng. 1988;110(4):385–391.