2,180
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Large eddy simulations of the turbulent channel flow over dimpled surfaces

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2186415 | Received 09 Oct 2022, Accepted 26 Feb 2023, Published online: 07 Mar 2023

References

  • Tacar Z, Sasaki N, Atlar M, et al. An investigation into effects of gate rudder® system on ship performance as a novel energy-saving and manoeuvring device. Ocean Eng. 2020;218:108250. doi:10.1016/J.OCEANENG.2020.108250.
  • White CM, Mungal MG. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu Rev Fluid Mech. 2008;40(1):235–256. doi:10.1146/annurev.fluid.40.111406.102156.
  • Choi K-S, Debisschop J-R, Clayton BR. Turbulent boundary-layer control by means of Spanwise-Wall oscillation. AIAA J. 1998;36(7):1157–1163. doi:10.2514/2.526.
  • Alekseev VV, Gachechiladze IA, Kiknadze GI, et al. Tornado-like energy transfer on three-dimensional concavities of reliefs-structure of self-organizing flow, their visualisation, and surface streamlining mechanisms. Trans 2nd Russ Nat Conf Heat Transfer, Heat Transfer Intensification Radiat Complex Heat Transfer. 1998;6:33–42.
  • Kovalenko GV, Terekhov VI, Khalatov AA. Flow regimes in a single dimple on the channel surface. J Appl Mech Tech Phys. 2010;51(6):839–848. doi:10.1007/s10808-010-0105-z.
  • Lienhart H, Breuer M, Köksoy C. Drag reduction by dimples? – A complementary experimental/numerical investigation. Int J Heat Fluid Flow. 2008;29(3):783–791. doi:10.1016/J.IJHEATFLUIDFLOW.2008.02.001.
  • Tay CMJ, Khoo BC, Chew YT. Mechanics of drag reduction by shallow dimples in channel flow. Phys Fluids. 2015;27(3):035109. doi:10.1063/1.4915069.
  • Burgess NK, Ligrani PM. Effects of dimple depth on channel Nusselt numbers and friction factors. J Heat Transfer. 2005;127(8):839. doi:10.1115/1.1994880.
  • Chen Y, Chew YT, Khoo BC. Enhancement of heat transfer in turbulent channel flow over dimpled surface. Int J Heat Mass Transfer. 2012;55(25–26):8100–8121. doi:10.1016/J.IJHEATMASSTRANSFER.2012.08.043.
  • van Nesselrooij M, Veldhuis LLM, van Oudheusden BW, et al. Drag reduction by means of dimpled surfaces in turbulent boundary layers. Exp Fluids. 2016;57(9):142. doi:10.1007/s00348-016-2230-9.
  • Vida N. Three dimensional surface structure for reduced friction resistance and improved heat exchange (Patent No. US20070193726A1); 2004.
  • Tay CMJ. Flow past dimpled surfaces. National University of Singapore; 2016; http://scholarbank.nus.sg/bitstream/10635/124186/1/TayCMJ.pdf.
  • Wüst C. Dellen im Dach. Der Spiegel, 170–172. http://magazin.spiegel.de/EpubDelivery/spiegel/pdf/30346859; 2004.
  • Tay CM, Chew YT, Khoo BC, et al. Development of flow structures over dimples. Exp Therm Fluid Sci. 2014;52:278–287. doi:10.1016/J.EXPTHERMFLUSCI.2013.10.001.
  • Ligrani PM, Harrison JL, Mahmmod GI, et al. Flow structure due to dimple depressions on a channel surface. Phys Fluids. 2001;13(11):3442–3451. doi:10.1063/1.1404139.
  • Turnow J, Kornev N, Zhdanov V, et al. Flow structures and heat transfer on dimples in a staggered arrangement. Int J Heat Fluid Flow. 2012;35:168–175. doi:10.1016/J.IJHEATFLUIDFLOW.2012.01.002.
  • Tay CM. Determining the Effect of Dimples on Drag in a Turbulent Channel Flow. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition; 2011, January 4. doi:10.2514/6.2011-682.
  • Wu J, Yeo KS. Flow past Dimpled Surfaces; Part 2: Computational Study for Turbulent Flow in Dimpled Channels. Annual Report on the NUS-Airbus Collaboration under Project R-265-000-272, 597; 2011.
  • Ng JH, Jaiman RK, Lim TT, et al. Geometric effects of shallow dimples in turbulent channel flows at Reτ≈ 180: a vorticity transport perspective. Flow, Turbul Combust. 2020: 1–40. doi:10.1007/s10494-020-00112-6.
  • Andrade JR, Martins RS, Mompean G, et al. Analyzing the spectral energy cascade in turbulent channel flow. Phys Fluids. 2018;30(6). doi:10.1063/1.5022653
  • Hussain AKMF, Reynolds WC. Measurements in fully developed turbulent channel flow. J Fluids Eng. 1975;97(4):568. doi:10.1115/1.3448125.
  • Kim J, Moin P, Moser R. Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech. 1987;177:133–166. doi:10.1017/S0022112087000892.
  • Laufer J. Investigation of Turbulent Flow Two-Dimensional Channel. https://ntrs.nasa.gov/search.jsp?R=19930092098; 1951.
  • Moser RD, Kim J, Mansour NN. Direct numerical simulation of turbulent channel flow up to Reτ=590. Phys Fluids. 1999;11(4):943–945. doi:10.1063/1.869966.
  • Huang NE, Shen Z, Long SR, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R. Soc. A. 1996;454(1971):903–995.
  • Ng JH, Jaiman RK, Lim TT. A numerical study for passive turbulent drag reduction via shallow dimples. 21st Australasian Fluid Mechanics Conference. https://www.nscc.sg; 2018.
  • Veldhuis LLM, Vervoorty E. Drag effect of a dented surface in a turbulent flow. Collection of Technical Papers - AIAA Applied Aerodynamics Conference; 2009. doi:10.2514/6.2009-3950.
  • Marino A, Ilter YK, Song S, et al.. Design specification, commission and calibration of the University of Strathclyde's Fully Turbulent Flow Channel (FTFC) facility. Rome, Italy 6th International Conference on Advanced Model Measurements Technologies for The Maritime Industry (AMT'19), 2019.
  • Wang Z, Yeo KS, Khoo BC. DNS of low Reynolds number turbulent flows in dimpled channels. J Turbul. 2006;7:1–31. doi:10.1080/14685240600595735.
  • Piomelli U, Liu J. Large-eddy simulation of rotating channel flows using a localized dynamic model. Phys Fluids. 1998;7(4):839. doi:10.1063/1.868607.
  • Scotti A, Piomelli U. Numerical simulation of pulsating turbulent channel flow. Phys Fluids. 2001;13:1367), doi:10.1063/1.1359766.
  • Nicoud F, Ducros F. Subgrid-Scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul Combust. 1999;62(3):183–200. doi:10.1023/A:1009995426001.
  • Blazek J. Computational fluid dynamics: principles and applications. Third Edition. The Boulevard, Langford Lane, Kidlington, Oxford, UK: Elsevier; 2015; ISBN: 978-0-08-099995-1.
  • Versteeg HK, Malalasekera W. An introduction to computational fluid dynamics: The finite volume method. Second edition,. Edinburgh Gate, Harlow, Essex, England: Pearson Education Limited; 2007; ISBN: 9780131274983.
  • Issa RI, Gosman AD, Watkins AP. The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme. J Comput Phys. 1986;62(1):66–82. doi:10.1016/0021-9991(86)90100-2.
  • Darwish MS, Moukalled FH. Normalized variable and space formulation methodology for high-resolution schemes. Numer Heat Transfer. 2007;26(1):79–96. doi:10.1080/10407799408914918.
  • Leonard BP. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection. Comput Methods Appl Mech Eng. 1991;88(1):17–74. doi:10.1016/0045-7825(91)90232-U.
  • Ferziger JH, Perić M. Computational methods for fluid dynamics. In: Computational methods for fluid dynamics (3rd ed.). Berlin, Heidelberg: Springer; 2002. doi:10.1007/978-3-642-56026-2.
  • Piomelli U, Rouhi A, Geurts BJ. A grid-independent length scale for large-eddy simulations. J Fluid Mech. 2019;766:499–527. doi:10.1017/jfm.2015.29.
  • Karniadakis G, Sherwin S. Spectral/hp element methods for computational fluid dynamics. Spectral/Hp Elem Methods Comput Fluid Dyn. 2005. doi:10.1093/ACPROF:OSO/9780198528692.001.0001.
  • Kiknadze GI, Gachechiladze IA, Barnaveli TT, Jr. The Mechanisms of The Phenomenon of Tornado-Like Jets Self-Organization In The Flow Along The Dimples on The Initially Flat Surface. 2009, 1–10; 2012.
  • Jeong J, Hussain F. On the identification of a vortex. J Fluid Mech. 1995;285(February 2015):69–94. doi:10.1017/S0022112095000462.
  • Pope SB. Turbulent flows. The Edinburgh Building, Cambridge, United Kingdom: Cambridge University Press; 2000. doi:10.1017/CBO9780511840531.