211
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An EDQNM study of the dissipation rate in isotropic non-equilibrium turbulence

& ORCID Icon
Pages 217-234 | Received 18 Nov 2022, Accepted 21 Feb 2023, Published online: 16 Mar 2023

References

  • Taylor GI. Statistical theory of turbulence. Proc R Soc London Ser A, Math Phys Sci. 1935;151:421–444.
  • Rubinstein R, Clark TT. ‘Equilibrium’ and ‘non-equilibrium’ turbulence. Theoretical Appl Mech Lett. 2017;7:301–305.
  • Sreenivasan KR. On the scaling of the turbulence energy dissipation rate. Phys Fluids. 1984;27:1048.
  • Pearson BR, Krogstad PA, van de Water W. Measurements of the turbulent energy dissipation rate. Phys Fluids. 2002;14:1288.
  • Burattini P, Lavoie P, Antonia RA. On the normalised turbulent energy dissipation rate. Phys Fluids. 2005;17:098103.
  • Bos WJT, Shao L, Bertoglio JP. Spectral imbalance and the normalised dissipation rate of turbulence. Phys Fluids. 2007;19:045101.
  • Goto S, Vassilicos JC. The dissipation rate coefficient of turbulence is not universal and depends on the internal stagnation point structure. Phys Fluids. 2009;21:035104.
  • Seoud RE, Vassilicos JC. Dissipation and decay of fractal-generated turbulence. Phys Fluids. 2007;19:105108.
  • Valente PC, Vassilicos JC. Universal dissipation scaling for nonequilibrium turbulence. Phys Rev Lett. 2012;108:214503.
  • Hearst RJ, Lavoie P. Decay of turbulence generated by a square-fractal-element grid. J Fluid Mech. 2014;741:567–584.
  • Goto S, Vassilicos JC. Energy dissipation and flux laws for unsteady turbulence. Phys Lett A. 2015;379:1144–1148.
  • Meldi M, Sagaut P. Investigation of anomalous very fast decay regimes in homogeneous isotropic turbulence. J Turbulence. 2018;19:390–413.
  • Bos WJT, Rubinstein R. Dissipation in unsteady turbulence. Phys Rev Fluids. 2017;2:022601.
  • Yoshizawa A. Nonequilibrium effect of the turbulent-energy-production process on the inertial-range energy spectrum. Phys Rev E. 1994;49:4065.
  • Bos WJT. Production and dissipation of kinetic energy in grid turbulence. Phys Rev Fluids. 2020;5:104607.
  • Goto S, Vassilicos J. Unsteady turbulence cascades. Phys Rev E. 2016;94:053108.
  • Liu F, Lu L, Bos WJ, et al. Assessing the nonequilibrium of decaying turbulence with reversed initial fields. Phys Rev Fluids. 2019;4:084603.
  • Rubinstein R, Clark T, Livescu D, et al. Time-dependent isotropic turbulence. J Turbul. 2004;5:011.
  • Horiuti K, Tamaki T. Nonequilibrium energy spectrum in the subgrid-scale one-equation model in large-eddy simulation. Phys Fluids. 2013;25:125104.
  • Araki R, Bos WJT. Inertial range scaling of inhomogeneous turbulence. preprint arXiv:2210.14516, 2022.
  • Lohse D. Periodically kicked turbulence. Phys Rev E. 2000;62:4946.
  • Kuczaj AK, Geurts BJ, Lohse D. Response maxima in time-modulated turbulence: direct numerical simulations. Europhys Lett. 2006;73:851.
  • Bos WJT, Clark T, Rubinstein R. Small scale response and modeling of periodically forced turbulence. Phys Fluids. 2007;19:055107.
  • Orszag SA. Lectures on the statistical theory of turbulence.New York : Flow Research Inc.; 1974.
  • Carati D, Winckelmans G, Jeanmart H. On the modelling of the subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J Fluid Mech. 2001;441:119.
  • Fang L, Bos WJT, Shao L, et al. Time reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. J Turbul. 2012;13:N3.
  • Liu F, Fang L, Fang J. Non-equilibrium turbulent phenomena in transitional flat plate boundary-layer flows. Appl Math Mech. 2021;42:567–582.
  • Zhao H, Liu Y, Shao L, et al. Existence of positive skewness of velocity gradient in early transition. Phys Rev Fluids. 2021;6:104608.
  • Lumley J. Similarity and the turbulent energy spectrum. Phys Fluids. 1967;10:855.
  • Orszag SA. Analytical theories of turbulence. J Fluid Mech. 1970;41:363.
  • André J, Lesieur M. Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J Fluid Mech. 1977;81:187.
  • Lesieur M, Schertzer D. Amortissement auto-similaire d'une turbulence à grand nombre de Reynolds. J Mécanique. 1978;17:609–646.
  • Leslie D. Developments in the theory of turbulence. Oxford: Oxford University Press; 1973.
  • Pouquet A, Lesieur M, André J, et al. Evolution of high Reynolds number two-dimensional turbulence. J Fluid Mech. 1975;72:305–319.
  • Leith C. Atmospheric predictability and two-dimensional turbulence. J Atmos Sci. 1971;28:145–161.
  • Cekli H, Tipton C, van de Water W. Resonant enhancement of turbulent energy dissipation. Phys Rev Lett. 2010;105:044503.
  • Schiestel R. Multiple-time-scale modeling of turbulent flows in one-point closures. Phys Fluids. 1987;30:722.
  • Cadiou A, Hanjalić K, Stawiarski K. A two-scale second-moment turbulence closure based on weighted spectrum integration. Theoretical Comput Fluid Dyn. 2004;18:1–26.
  • Lesieur M. Turbulence in fluids. Dordrecht: Kluwer Dordrecht; 1990.
  • Sagaut P, Cambon C. Homogeneous turbulence dynamics. Cambridge: Cambridge University Press; 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.