150
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of groove distributions on supersonic turbulent channel flows

ORCID Icon, , , , &
Pages 349-366 | Received 19 Feb 2023, Accepted 28 May 2023, Published online: 12 Jun 2023

References

  • Pirozzoli S. Numerical methods for high-speed flows. Annu Rev Fluid Mech. 2011;43(1):163–194.
  • Foysi H, Sarkar S, Friedrich R. Compressibility effects and turbulence scalings in supersonic channel flow. J Fluid Mech. 2004;509:207–216.
  • Jiménez J. Cascades in wall-bounded turbulence. Annu Rev Fluid Mech. 2012;44(1):27–45.
  • Modesti D, Sathyanarayana S, Salvadore F, et al. Direct numerical simulation of supersonic turbulent flows over rough surfaces. J Fluid Mech. 2022;942:A44.
  • Shang JJS, Yan H. High-enthalpy hypersonic flows. Adv Aerod. 2020;2(1):1–39.
  • Sun D, Guo Q, Yuan X, et al. A decomposition formula for the wall heat flux of a compressible boundary layer. Adv Aerod. 2021;3(1):33.
  • Yu M, Xu C-X, Pirozzoli S. Genuine compressibility effects in wall-bounded turbulence. Phys Rev Fluids. 2019;4(12):123402.
  • Bradshaw P. Compressible turbulent shear layers. Annu Rev Fluid Mech. 1977;9(1):33–52.
  • Yu M, Xu C-X, Pirozzoli S. Compressibility effects on pressure fluctuation in compressible turbulent channel flows. Phys Rev Fluids. 2020;5(11):113401.
  • Yu M, Liu P, Fu Y, et al. Wall shear stress, pressure, and heat flux fluctuations in compressible wall-bounded turbulence, part I: One-point statistics. Phys Fluids. 2022;34(6):065139.
  • Yu M, Liu PX, Fu YL, et al. Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. II. Spectra, correlation and nonlinear interactions. Phys Fluids. 2022;34(6):065140.
  • Latin RM, Bowersox RDW. Temporal turbulent flow structure for supersonic rough-wall boundary layers. AIAA J. 2002;40(5):832–841.
  • Jiménez J. Turbulent flows over rough walls. Annu Rev Fluid Mech. 2004;36(1):173–196.
  • Ma R, Alamé K, Mahesh K. Direct numerical simulation of turbulent channel flow over random rough surfaces. J Fluid Mech. 2021;908:A40.
  • Kadivar M, Tormey D, McGranaghan G. A review on turbulent flow over rough surfaces: fundamentals and theories. Int J Thermofluids. 2021;10:100077.
  • Yu M, Liu P, Tang Z, et al. Effects of wall disturbances on the statistics of supersonic turbulent boundary layers. Phys Fluids. 2023;35(2):025126.
  • Kocher BD, Combs CS, Kreth PA, et al. Investigation of the effects of distributed surface roughness on supersonic flows. 2017.
  • Hudson JD, Dykhno L, Hanratty TJ. Turbulence production in flow over a wavy wall. Exp Fluids. 1996;20(4):257–265.
  • Ricco P, Skote M, Leschziner MA. A review of turbulent skin-friction drag reduction by near-wall transverse forcing. Progress Aerosp Sci. 2021;123:100713.
  • DeGroot CT, Wang C, Floryan JM. Drag reduction Due to streamwise grooves in turbulent channel flow. J Fluids Eng. 2016;138(12):121201.
  • Garcia-Mayoral R, Jimenez J. Drag reduction by riblets. Philos Trans Ser A, Math, Phys, Eng Sci. 2011 April, 13;369(1940):1412–1427.
  • Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets. J Fluid Mech. 1993;255(−1):503.
  • Sasamori M, Mamori H, Iwamoto K, et al. Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp Fluids. 2014;55(10):1–14.
  • Fujisawa N, Hirabayashi K, Yamagata T. Aerodynamic noise reduction of circular cylinder by longitudinal grooves. J Wind Eng Ind Aerodyn. 2020;199:104129.
  • Fuaad PA, Arul Prakash K. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: A DNS study. Comput Fluids. 2019;181:208–223.
  • Martell MB, Perot JB, Rothstein JP. Direct numerical simulations of turbulent flows over superhydrophobic surfaces. J Fluid Mech. 2009;620:31–41.
  • Martell MB, Rothstein JP, Perot JB. An analysis of superhydrophobic turbulent drag reduction mechanisms using direct numerical simulation. Phys Fluids. 2010;22(6):065102.
  • Perot B, Moin P. Shear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence. J Fluid Mech. 1995;295(−1):199.
  • Hahn S, Je J, Choi H. Direct numerical simulation of turbulent channel flow with permeable walls. J Fluid Mech. 2002;450:259–285.
  • Tu G, Chen J, Yuan XX, et al. Optimal porosity and pore radius of porous surfaces for damping the second-mode instability. Acta Aerodynamica Sinica. 2018;36(2):273–278.
  • Guo Q, Li C, Tu G, et al. Investigation on the depth effects of the micro-grooves on the suppression of the second modes in the hypersonic boundary layer. J Phys: Conf Ser. 2021;1786(1):012053.
  • Liu Y, Yang Q, Tu G, et al. Hypersonic boundary-layer instability suppression by transverse microgrooves with machining flaw. AIAA J. 2023;61(3):1021–1031.
  • Jelly TO, Ramani A, Nugroho B, et al. Impact of spanwise effective slope upon rough-wall turbulent channel flow. J Fluid Mech. 2022;951:A1.
  • Yuan X, Fu Y, Chen J, et al. Supersonic turbulent channel flows over spanwise-oriented grooves. Phys Fluids. 2022;34(1):016109.
  • Peltier SJ, Humble RA, Bowersox RDW. Crosshatch roughness distortions on a hypersonic turbulent boundary layer. Phy Fluids. 2016;28(4):045105.
  • Yuan J, Aghaei Jouybari M. Topographical effects of roughness on turbulence statistics in roughness sublayer. Phys Rev Fluids. 2018;3(11):114603.
  • Busse A, Thakkar M, Sandham ND. Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J Fluid Mech. 2016;810:196–224.
  • Li S, Zhou Z, Chen D, et al. Effects of wall topology on statistics of cube-roughened wall turbulence. Boundary Layer Meteorol. 2023;186(2):305–336.
  • Li XL, Fu DX, Ma YW, et al. Direct numerical simulation of compressible turbulent flows. Acta Mech Sin. 2010;26(6):795–806.
  • Modesti D, Pirozzoli S. Reynolds and Mach number effects in compressible turbulent channel flow. Int J Heat Fluid Flow. 2016;59:33–49.
  • Duan L, Choudhari Meelan M, Wu M. Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J Fluid Mech. 2014;746:165–192.
  • Aghaei Jouybari M, Brereton GJ, Yuan J. Turbulence structures over realistic and synthetic wall roughness in open channel flow at Reτ = 1000. J Turbul. 2019;20(11–12):723–749.
  • Fu DX, Ma YW, Li XL. Direct numerical simulation of compressible turbulence (in Chinese). Beijing: Science Press; 2010.
  • Yu M, Zhao M, Tang Z, et al. A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction. J Fluid Mech. 2022;951:A2.
  • Otero RGJ, Patel A, Diez SR, et al. Turbulence modelling for flows with strong variations in thermo-physical properties. Int J Heat Fluid Flow. 2018;73:114–123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.