200
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Toward the use of LES for industrial complex geometries. Part II: Reduce the time-to-solution by using a linearised implicit time advancement

, , , ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 311-329 | Received 06 Nov 2022, Accepted 17 May 2023, Published online: 19 Jun 2023

References

  • Grenouilloux A, Leparoux J, Moureau V, et al. Toward the use of LES for industrial complex geometries. Part I: automatic mesh definition. J Turbul. 2022; submitted.
  • Chorin AJ. Numerical solution of the Navier–Stokes equations. Math Comput. 1968;22(104):745–762. doi: 10.1090/mcom/1968-22-104
  • Temam R. Une méthode d'approximation de la solution des équations de Navier–Stokes. Bull De La Soc Math Fr. 1968;96:115–152. doi: 10.24033/bsmf.1662
  • Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets. J Fluid Mech. 1993;255:503–539. doi: 10.1017/S0022112093002575
  • Choi H, Moin P. Effects of the computational time step on numerical solutions of turbulent flow. J Comp Phys. 1994;113(1):1–4. doi: 10.1006/jcph.1994.1112
  • Kim D, Choi H. A second-order time-accurate finite volume method for unsteady incompressible flow on hybrid unstructured grids. J Comp Phys. 2000;162(2):411–428. doi: 10.1006/jcph.2000.6546
  • Beam RM, Warming R. An implicit factored scheme for the compressible Navier–Stokes equations. AIAA J. 1978;16(4):393–402. doi: 10.2514/3.60901
  • Simo J, Armero F. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier–Stokes and Euler equations. Comp Meth Appl Mech Eng. 1994;111(1-2):111–154. doi: 10.1016/0045-7825(94)90042-6
  • Olshanskii MA, Terekhov KM, Vassilevski YV. An octree-based solver for the incompressible Navier–Stokes equations with enhanced stability and low dissipation. Comp Fluids. 2013;84:231–246. doi: 10.1016/j.compfluid.2013.04.027
  • Kay DA, Gresho PM, Griffiths DF, et al. Adaptive time-stepping for incompressible flow. Part II: Navier–Stokes equations. SIAM J Sci Comput. 2010;32(1):111–128. doi: 10.1137/080728032
  • John V, Rang J. Adaptive time step control for the incompressible Navier–Stokes equations. Comp Meth Appl Mech Eng. 2010;199(9–12):514–524. doi: 10.1016/j.cma.2009.10.005
  • Hay A, Etienne S, Pelletier D, et al. hp-Adaptive time integration based on the BDF for viscous flows. J Comp Phys. 2015;291:151–176. doi: 10.1016/j.jcp.2015.03.022
  • Brayton RK, Gustavson FG, Hachtel GD. A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas. Proc IEEE. 1972;60(1):98–108. doi: 10.1109/PROC.1972.8562
  • Kalkote N, Assam A, Eswaran V. Acceleration of later convergence in a density-based solver using adaptive time stepping. AIAA J. 2019;57(1):352–364. doi: 10.2514/1.J057014
  • Moureau V, Domingo P, Vervisch L. Design of a massively parallel CFD code for complex geometries. C R Mec. 2011;339(2-3):141–148. doi: 10.1016/j.crme.2010.12.001
  • Malandain M, Maheu N, Moureau V. Optimization of the deflated conjugate gradient algorithm for the solving of elliptic equations on massively parallel machines. J Comp Phys. 2013;238:32–47. doi: 10.1016/j.jcp.2012.11.046
  • Dobrzynski C, Frey P. Anisotropic Delaunay mesh adaptation for unsteady simulations. Springer Berlin Heidelberg; 2008. p. 177–194.
  • Benard P, Balarac G, Moureau V, et al. Mesh adaptation for Large-Eddy simulations in complex geometries. Int J Numer Methods Fluids. 2016;81(12):719–740. doi: 10.1002/fld.v81.12
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluid A Fluid Dyn (1989–1993). 1991;3(7):1760–1765. doi: 10.1063/1.857955
  • Kraushaar M. Application of the compressible and low-Mach number approaches to Large–Eddy Simulation of turbulent flows in aero-engines [dissertation]. Institut National Polytechnique de Toulouse-INPT; 2011.
  • Sleijpen GLG, Fokkema DR. BiCGStab(ℓ) for linear equations involving unsymmetric matrices with complex spectrum. Electron Trans Numer Anal. 1993;1:11–32.
  • Wu X, Moin P. A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J Fluid Mech. 2008;608:81–112. doi: 10.1017/S0022112008002085
  • Meier W, Weigand P, Duan X, et al. Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust Flame. 2007;150(1-2):2–26. doi: 10.1016/j.combustflame.2007.04.002
  • Lartigue G, Meier U, Bérat C. Experimental and numerical investigation of self-excited combustion oscillations in a scaled gas turbine combustor. Appl Therm Eng. 2004;24(11-12):1583–1592. doi: 10.1016/j.applthermaleng.2003.10.026Industrial Gas Turbine Technologies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.