1,410
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The myth of URANS

ORCID Icon
Pages 367-392 | Received 06 Dec 2022, Accepted 01 May 2023, Published online: 19 Jun 2023

References

  • Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos Trans R Soc Lond A. 1895;186:123–164. doi:10.1098/rsta.1895.0004
  • Taylor GI. Eddy motion in the atmosphere. Philos Trans R Soc Lond A. 1915;215:1–26. doi:10.1098/rsta.1915.0001
  • Prandtl L. Bericht über untersuchungen zur ausgebildeten turbulenz. ZAMM J Appl Math Mech/Z Angew Math Mech. 1925;5(2):136–139. doi: 10.1002/zamm.19250050212
  • Smagorinsky J. General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev. 1963 Mar;91(3):99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: Proceedings of the IBM Scientific Computing Symposium on Environmental Sciences; Yorktown Heights, IBM, NY; 1967. p. 195–210.
  • Deardorff JW. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J Fluid Mech. 1970;41(part 2):453–480. doi: 10.1017/S0022112070000691
  • Germano M. Turbulence: the filtering approach. J Fluid Mech. 1992;238:325–336. doi: 10.1017/S0022112092001733
  • Pope SB. Turbulent flows. Cambridge: Cambridge University Press; 2000.
  • Celenligil MC, Mellor GL. Numerical solution of two-dimensional turbulent separated flows using a Reynolds stress closure model. J Fluids Eng. 1985 Dec;107(4):467–476. doi: 10.1115/1.3242515
  • Lasher WC, Taulbee DB. On the computation of turbulent backstep flow. Int J Heat Fluid Flow. 1992;13(1):30–40. doi: 10.1016/0142-727X(92)90057-G
  • Claus RW, Huang PG, MacInnes JM. Time-accurate simulations of a shear layer forced at a single frequency. AIAA J. 1990;28(2):267–275. doi: 10.2514/3.10384
  • Launder BE, Morse A, Rodi W, et al. Prediction of free shear flows: a comparison of the performance of six turbulence models. In: Free Turbulent Shear Flows: Volume I-Conference Proceedings; NASA; 1973. p. 361–426; SP-321. Proceedings of a conference held at NASA Langley Research Center, Hampton, Virginia, Jul 20–21, 1972.
  • Launder BE, Spalding DB. The numerical computation of turbulent flows. Comput Methods Appl Mech. 1974;3(2):269–289. doi: 10.1016/0045-7825(74)90029-2
  • Franke R, Rodi W. Calculation of vortex shedding past a square cylinder with various turbulence models. In: Durst F, Friedrich R, Launder BE, et al., editors. Turbulent Shear Flows 8; Berlin, Heidelberg. Springer Berlin Heidelberg; 1993. p. 189–204.
  • Rodi W. On the simulation of turbulent flow past bluff bodies. In: Murakami S, editor. Computational Wind Engineering 1. Oxford: Elsevier; 1993. p. 3–19. https://www.sciencedirect.com/science/article/pii/B978044481688750005X.
  • Bosch G, Rodi W. Simulation of vortex shedding past a square cylinder with different turbulence models. Int J Numer Methods Fluids. 1998;28(4):601–616. doi: 10.1002/(ISSN)1097-0363
  • Launder BE, Reece GJ, Rodi W. Progress in the development of a Reynolds-stress turbulence closure. J Fluid Mech. 1975;68(3):537–566. doi: 10.1017/S0022112075001814
  • Johansson SH, Davidson L, Olsson E. Numerical simulation of vortex shedding past triangular cylinders at high Reynolds number using a k−ε turbulence model. Int J Numer Methods Fluids. 1993;16(10):859–878. doi: 10.1002/fld.1650161002
  • Jansson LS, Davidson L, Olsson E. Calculation of steady and unsteady flows in a film-cooling arrangement using a two-layer algebraic stress model. Num Heat Trans A. 1994;25(3):237–258. doi: 10.1080/10407789408955947
  • Durbin PA. Separated flow computations with the k−ε−v2 model. AIAA J. 1995;33(4):659–664. doi: 10.2514/3.12628
  • Travin A, Shur M, Strelets M, et al. Detached-eddy simulations past a circular cylinder. Flow Turb Comb. 2000;63(1):293–313. doi: 10.1023/A:1009901401183
  • Iaccarino G, Ooi A, Durbin P, et al. Reynolds averaged simulation of unsteady separated flow. Int J Heat Fluid Flow. 2003;24(2):147–156. doi: 10.1016/S0142-727X(02)00210-2
  • Squires KD, Forsythe JR, Spalart PR. Detached-eddy simulation of the separated flow over a rounded-corner square. J Fluids Eng. 2005 Sep;127(5):959–966. doi: 10.1115/1.1990202
  • Shur M, Spalart PR, Squires KD, et al. Three-dimensionality in Reynolds-averaged Navier–Stokes solutions around two-dimensional geometries. AIAA J. 2005;43(6):1230–1242. doi: 10.2514/1.9694
  • Jin G, Braza M. Two-equation turbulence model for unsteady separated flows around airfoils. AIAA J. 1994;32(11):2316–2320. doi: 10.2514/3.12292
  • Carpy S, Manceau R. Turbulence modelling of statistically periodic flows: Synthetic jet into quiescent air. Int J Heat Fluid Flow. 2006;27(5):756–767. Special issue of the 6th International Symposium on Engineering Turbulence Modelling and Measurements – ETMM6. 10.1016/j.ijheatfluidflow.2006.04.002
  • Fadai-Ghotbi A, Manceau R, Borée J. Revisiting URANS computations of the backward-facing step flow using second moment closures. Influence of the numerics. Flow Turb Comb. 2008;81(3):395–414. doi: 10.1007/s10494-008-9140-8
  • Palkin E, Mullyadzhanov R, Hadžiabdić M, et al. Scrutinizing URANS in shedding flows: the case of cylinder in cross-flow in the subcritical regime. Flow Turb Comb. 2016;97(4):1017–1046. doi: 10.1007/s10494-016-9772-z
  • Pereira FS, Eça L, Vaz G, et al. On the simulation of the flow around a circular cylinder at Re=140,000. Int J Heat Fluid Flow. 2019;76:40–56. doi: 10.1016/j.ijheatfluidflow.2019.01.007
  • Spalart P. Strategies for turbulence modelling and simulations. Int J Heat Fluid Flow. 2000;21(3):252–263. doi: 10.1016/S0142-727X(00)00007-2
  • Travin A, Shur M, Spalart P, et al. On URANS solutions with LES-like behaviour. In: Neittaanmäki P, Rossi T, Majava K, et al., editors. Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS; 2004.
  • Speziale CG. Turbulence modeling for time-dependent RANS and VLES: a review. AIAA J. 1998 Feb;36(2):173–184. doi: 10.2514/2.7499
  • Israel DM, Postl D, Fasel HF. A flow simulation methodology for simulation of coherent structures and flow control. AIAA; 2004. AIAA Paper 2004–2225. 2nd AIAA Flow Control Conference, Jun 28–Jul 1, 2004, Portland, OR.
  • Fasel HF, von Terzi DA, Sandberg RD. A methodology for simulating compressible turbulent flows. J Appl Mech. 2006 May;73(3):405–412. doi: 10.1115/1.2150231
  • Girimaji SS, Jeong E, Srinivasan R. Partially averaged Navier–Stokes method for turbulence: fixed point analysis and comparison with unsteady partially averaged Navier–Stokes. J Appl Mech. 2006 May;73(3):422–429. doi:10.1115/1.2173677
  • Girimaji SS. Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method. J Appl Mech. 2006 May;73:413–421. doi: 10.1115/1.2151207
  • Girimaji SS, Abdol-Hamid KS. Partially-averaged Navier Stokes model for turbulence: implementation and validation; 2005. AIAA Paper 2005–502. 43rd AIAA Aerospace Sciences Meeting & Exhibit, Jan 10–13, 2005, Reno, NV.
  • Chaouat B, Schiestel R. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys Fluids. 2005;17(6):065106. doi: 10.1063/1.1928607
  • Schiestel R, Dejoan A. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor Comput Fluid Dyn. 2005 Feb;18(6):443–468. doi: 10.1007/s00162-004-0155-z
  • Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. J Comp Phys. 1975 Aug;18(4):376–404. doi: 10.1016/0021-9991(75)90093-5
  • Yoshizawa A. A statistically-derived subgrid model for the large-eddy simulation of turbulence. Phys Fluids. 1982 Sep;25(9):1532–1538. doi: 10.1063/1.863940
  • Mohamed MS, Larue JC. The decay power law in grid-generated turbulence. J Fluid Mech. 1990;219:195–214. doi: 10.1017/S0022112090002919
  • Lavoie P, Djenidi L, Antonia RA. Effects of initial conditions in decaying turbulence generated by passive grids. J Fluid Mech. 2007;585:395–420. doi: 10.1017/S0022112007006763
  • Speziale CG, Mhuiris NMG. On the prediction of equilibrium states in homogeneous turbulence. J Fluid Mech. 1989;209:591–615. doi:10.1017/S002211208900323X
  • Haering SW, Oliver TA, Moser RD. Active model split hybrid RANS/LES. Phys Rev Fld. 2022 Jan;7:014603. doi: 10.1103/PhysRevFluids.7.014603
  • Perot JB, Kops SMDB. Modeling turbulent dissipation at low and moderate Reynolds numbers. J Turb. 2006;7:N69. doi: 10.1080/14685240600907310
  • Towery CAZ, Sáenz JA, Livescu D. Posterior comparison of energy partitioning dynamics in several hybrid RANS-LES turbulence models. In preparation. 2023.
  • Morgan BE, Greenough JA. Large-eddy and unsteady RANS simulations of a shock-accelerated heavy gas cylinder. Shock Waves. 2016;26(4):355–383. doi: 10.1007/s00193-015-0566-3
  • Haines BM, Grinstein FF, Schwarzkopf JD. Reynolds-averaged Navier–Stokes initialization and benchmarking in shock-driven turbulent mixing. J Turb. 2013;14(2):46–70. doi: 10.1080/14685248.2013.779380
  • Bogey C, Bailly C. Effects of inflow conditions and forcing on subsonic jet flows and noise. AIAA J. 2005;43(5):1000–1007. doi: 10.2514/1.7465
  • Mathew J, Lechner R, Foysi H, et al. An explicit filtering method for large eddy simulation of compressible flows. Phys Fluids. 2003;15(8):2279–2289. doi: 10.1063/1.1586271
  • Corrsin S. The isotropic turbulent mixer: part II. arbitrary Schmidt number. AIChE J. 1964;10(6):870–877. doi: 10.1002/aic.690100618
  • Comte-Bellot G, Corrsin S. The use of a contraction to improve the isotropy of grid-generated turbulence. J Fluid Mech. 1966;25(4):657–682. doi: 10.1017/S0022112066000338
  • Skrbek L, Stalp SR. On the decay of homogeneous isotropic turbulence. Phys Fluids. 2000;12(8):1997–2019. doi: 10.1063/1.870447
  • Ristorcelli JR. Passive scalar mixing: analytic study of time scale ratio, variance, and mix rate. Phys Fluids. 2006 Jul;18(7):075101. doi: 10.1063/1.2214704