286
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mesh and model requirements for capturing deep-stall aerodynamics in low-Mach-number flows

, , &
Pages 393-418 | Received 13 Feb 2023, Accepted 16 May 2023, Published online: 14 Jun 2023

References

  • Swalwell K, Sheridan J, Melbourne M. Frequency analysis of surface pressures on an airfoil after stall. In: 21st AIAA Applied Aerodynamics Conference. Orlando, Florida, Vo. 4. 2003. p. 641–655.
  • Skrzypiński WR, Gaunaa M, Sørensen N, et al. Self-induced vibrations of a DU96-W-180 airfoil in stall. Wind Energy. 2014;17(4):641–655. doi: 10.1002/we.v17.4
  • Sagaut P. Large eddy simulation for incompressible flows. Berlin, Heidelberg: Springer; 2006.
  • Labourasse E, Sagaut P. Reconstruction of turbulent fluctuations using a hybrid RANS/LES approach. J Comput Phys. 2002;182:301–336. doi: 10.1006/jcph.2002.7169
  • Spalart PR, Allmaras SR. A one-equation turbulence model for aerodynamic flows. 1992. (Technical Report AIAA-92-0439, American Insitute of Aeronautics and Astronautics).
  • Menter FR. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994;32(8):1598–1605. doi: 10.2514/3.12149
  • Menter FR. Zonal equation two equation k-ω turbulence models for aerodynamic flows. AIAA Paper. 1993. 93–2906.
  • Menter FR, Kuntz M, Langtry R. Ten years of industrial experience with the SST turbulence model. In: Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer. 2003.Antalya, Turkey. p. 625–632.
  • Spalart P, Jou WH, Strelets M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Advances in DNS/LES: direct numerical simulation and large eddy simulation. Greyden Press; 1997. p. 137–148.
  • Strelets M. Detached eddy simulation of massively separated flows. AIAA Paper. (2001–0879). 2001.
  • Gritskevich MS, Garbaruk AV, Schütze J. Development of DDES and IDDES formulations for the k-ω shear stress transport model. Flow Turbul Combust. 2012;88:431–449. doi: 10.1007/s10494-011-9378-4
  • Spalart PR, Deck S, Shur ML. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor Comput Fluid Dyn. 2006;20:181–195. doi: 10.1007/s00162-006-0015-0
  • Im H-S, Zha G-C. Delayed detached eddy simulation of airfoil stall flows using high-order schemes. J Fluids Eng. 2014;136(11):1–12. doi:10.1115/1.4027813.
  • Shur ML, Spalart PR, Strelets MK, et al. A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. Int J Heat Fluid Flow. 2009;29:1638–1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
  • Sørensen NN, Schreck S. Transitional DDES computations of the NREL phase-VI rotor in axial flow conditions. J Phys Conf Ser. 2014;555. doi:10.1088/1742-6596/555/1/012096.
  • Guilmineau E, Deng GB, Leroyer A, et al. Assessment of hybrid RANS-LES formulations for flow simulation around the Ahmed body. Comput Fluids. 2018;176:302–319. doi: 10.1016/j.compfluid.2017.01.005
  • Sprague MA, Ananthan S, Vijayakumar G, et al. ExaWind: A multifidelity modeling and simulation environment for wind energy. J Phys Conf Ser. 2020;1452:Article ID 012071. doi: 10.1088/1742-6596/1452/1/012071
  • Domino S. Toward verification of formal time accuracy for a family of approximate projection methods using the method of manufactured solutions. In: Proceedings of the 2006 Summer Program, Center for Turbulence Research. Stanford University, California. Vo. 11, 2006. p. 163–177.
  • Sharma A, Ananthan S, Sitaraman J, et al. Overset meshes for incompressible flows: on preserving accuracy of underlying discretizations. J Comput Phys. 2021;428:Article ID 109987. doi: 10.1016/j.jcp.2020.109987
  • Nalu-Wind documentation -- Advection Stabilization. 2022. Available from: https://nalu-wind.readthedocs.io/en/latest/source/theory/advectionStabilization.html.
  • Sørensen NN, Méndez B, Muñoz A, et al. CFD code comparison for 2D airfoil flows. J Phys Conf Ser. 2016;753(8):Article ID 082019. doi:10.1088/1742-6596/753/8/082019.
  • Pointwise X. Mesh generation software for CFD applications, v18.6r3. 2022. Available from: https://github.com/pointwise/AirfoilMesh.
  • Carrigan T. NACA 4-series airfoil generator and boundary layer mesh generator. 2008. Available from: https://github.com/pointwise/AirfoilMesh.
  • Abbot H, von Doenhoff AE. Theory of wing sections. New York: Dover Publications, Inc; 1959.
  • Hoerner SF. Fluid dynamics drag. Hoerner Fluid Dynamics. Bricktown, New Jersey; 1965.
  • McCroskey WJ. A critical assessment of wind tunnel results for the NACA 0012 airfoil. 1987. (Technical Report CP429, AGARD).
  • McCroskey WJ, McAlister K, Carr LW, et al. An experimental study of dynamic stall on advanced airfoil sections. 1982. (Technical Report 84245, NASA TM).
  • Sheldahl RE, Klimas PC. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. 1981. (Technical Report SAND-80-2114, Sandia National Labs).
  • Roshko A. On drag and shedding frequency of two-dimensional bluff bodies. 1954. (Technical Report NACA TN-3169, NACA).
  • Fage A, Johansen FC. On the flow of air behind an inclined flat plate of infinite span. Proc R Soc A. 1927;4:170–197. https://doi.org/10.1098/rspa.1927.0130.
  • Swalwell KE, Sheridan J, Melbourne WH. The effect of turbulent intensity on stall of the NACA 0021 aerofoil. In: 14th Australasian Fluid Mechanics Conference. 2001. Victoria, Australia. p. 941–944.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.