142
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wall heat flux in supersonic turbulent expansion flow with shock impingement

, , &
Pages 445-473 | Received 11 Jun 2023, Accepted 11 Sep 2023, Published online: 21 Sep 2023

References

  • Dolling DS. Fifty years of shockwave/boundary layer interaction research: what next? AIAA J. 2001;39(8):1517–1531. doi:10.2514/2.1476
  • Gaitonde DV. Progress in shock wave/boundary layer interactions. Prog Aerosp Sci. 2015;72:80–99. doi:10.1016/j.paerosci.2014.09.002
  • Clemens NT, Narayanaswamy V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu Rev Fluid Mech. 2014;46:469–492. doi:10.1146/annurev-fluid-010313-141346
  • Chew YT. Shockwave and boundary layer interaction in the presence of an expansion corner. Aeronautical Quarterly. 1979;30:506–527. doi:10.1017/S0001925900008684
  • Chung KM, Lu FK. Hypersonic turbulent expansion-corner flow with shock impingement. J Propul Power. 1995;11(3):441–447. doi:10.2514/3.23863
  • White ME, Ault DA. Expansion corner effects on hypersonic shock wave/turbulent boundary-layer interactions. J Propul Power. 1996;12(6):1169–1173. doi:10.2514/3.24157
  • Sathianarayanan A, Verma SB. Experimental investigation of an incident shock-induced interaction near an expansion corner. J Spacecraft Rockets. 2017;54(3):769–773. doi:10.2514/1.A33466
  • Tong FL, Li XL, Yuan XX, et al. Incident shock wave and supersonic turbulent boundary layer interactions near an expansion corner. Comput Fluids. 2020;198:104385. doi:10.1016/j.compfluid.2019.104385
  • Zhang ZG, Tong FL, Duan JY, et al. Direct numerical simulation of supersonic turbulent expansion corner with shock impingement. Phys Fluids. 2021;33:105104. doi:10.1063/5.0064741
  • Li WP, Fan YT, Modesti D, et al. Decomposition of the mean skin-friction drag in compressible turbulent channel flows. J Fluid Mech. 2019;875:101–123. doi:10.1017/jfm.2019.499
  • Koll MD, Favale JV, Kirchne BM, et al. Flow structure identification in the near wake of an axisymmetric supersonic base flow using MEEMD. 47th AIAA Fluid Dynamics Conference 2017, Report No: AIAA-2017-3972.
  • Hayashi M, Aso S, Tan A. Fluctuation of heat transfer in shock wave/turbulent boundary-layer interaction. AIAA J. 1989;27(4):399–404. doi:10.2514/3.10126
  • Schülein E. Skin friction and heat flux measurements in shock/boundary layer interaction flows. AIAA J. 2006;44(8):1732–1741. doi:10.2514/1.15110
  • Bernardini M, Asproulias I, Larsson J, et al. Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys Rev Fluids. 2016;1:084403. doi:10.1103/PhysRevFluids.1.084403
  • Volpiani PS, Bernardini M, Larsson J. Effects of a nonadiabatic wall on supersonic shock/boundary -layer interactions. Phys Rev Fluids. 2018;3:083401. doi:10.1103/PhysRevFluids.3.083401
  • Priebe S, Martin MP. Turbulence in a hypersonic compression ramp flow. Phys Rev Fluids. 2021;6:034601. doi:10.1103/PhysRevFluids.6.034601
  • Back LH, Cuffel RF. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves. AIAA J. 1970;8(10):1871–1873. doi:10.2514/3.6004
  • Tong FL, Yuan XX, Lai J, et al. Wall heat flux in a supersonic shock wave/turbulent boundary layer interaction. Phys Fluids. 2022;34:065104. doi:10.1063/5.0094070
  • Li XL, Fu DX, Ma YW, et al. Direct numerical simulation of compressible turbulent flows. Acta Mech Sin. 2010;26:795–806. doi:10.1007/s10409-010-0394-8
  • Tong FL, Dong SW, Lai J, et al. Wall shear stress and wall heat flux in a supersonic turbulent boundary layer. Phys Fluids. 2022;34:015127. doi:10.1063/5.0079230
  • Tong FL, Dong SW, Duan JY, et al. Effect of expansion on the wall heat flux in a supersonic turbulent boundary layer. Phys Fluids. 2022;34:105109. doi:10.1063/5.0113514
  • Tong FL, Sun D, Li XL. Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall. Chinese J Aeronaut. 2021;34(5):350–363. doi:10.1016/j.cja.2020.10.016
  • Chen X, Chen JQ, Yuan XX. Hypersonic boundary layer transition on a concave wall induced by low-frequency blowing and suction. Phys Fluids. 2022;34:114105. doi:10.1063/5.0113570
  • Wu M, Martin MP. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J. 2007;45(4):879–889. doi:10.2514/1.27021
  • Gottieb S, Shu CW. Total variation diminishing Runge–Kutta schemes. Math Comput. 1998;67:73–85. doi:10.1090/S0025-5718-98-00913-2
  • Dupont P, Haddad C, Debieve JF. Space and time organization in a shock-induced separated boundary layer. J Fluid Mech. 2006;559:255–277. doi:10.1017/S0022112006000267
  • Sun MB, Hu ZW, Sandham ND. Recovery of s supersonic turbulent boundary layer after an expansion corner. Phys Fluids. 2017;29:076103. doi:10.1063/1.4995293
  • Fang J, Zheltovodov AA, Yao YF, et al. On the turbulence amplification in shock-wave/turbulent boundary layer interaction. J Fluid Mech. 2020;897:A32. doi:10.1017/jfm.2020.350
  • Pirozzoli S, Grasso F, Gatski TB. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Phys Fluids. 2004;16(3):530–545. doi:10.1063/1.1637604
  • Griffin KP, Fu L, Moin P. Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer. P Natl Acad Sci USA. 2021;118(34):e2111144118. doi:10.1073/pnas.2111144118
  • Walz A. Compressible turbulent boundary layers (CNRS, 1962), pp. 299–350.
  • Zhang YS, Bi WT, Hussain F, et al. A generalized Reynolds analogy for compressible wall-bounded turbulent flows. J Fluid Mech. 2014;739:392–420. doi:10.1017/jfm.2013.620
  • Pirozzoli S, Bernardini M, Grasso F. Direct numerical simulation of transonic shock/ boundary layer interaction under conditions of incipient separation. J Fluid Mech. 2010;657:361–393. doi:10.1017/S0022112010001710
  • Shadloo MS, Hadjadj A, Hussain F. Statistical behavior of supersonic turbulent boundary layers with heat transfer at M∞ = 2. Int J Heat Fluid Flow. 2015;53:113–134. doi:10.1016/j.ijheatfluidflow.2015.02.004
  • Humble RA, Elsinga GE, Scarano F, et al. Three-dimensional instantaneous structure of a shock wave/turbulent boundary layer interaction. J Fluid Mech. 2009;622:33–62. doi:10.1017/S0022112008005090
  • Piponniau S, Dussauge JP, Debieve JF, et al. A simple model for low-frequency unsteadiness in shock-induced separation. J Fluid Mech. 2009;629:87–108. doi:10.1017/S0022112009006417
  • Pirozzoli S, Grasso F. Direct numerical simulation of imping shock wave/turbulent boundary layer interaction at M = 2.25. Phys Fluids. 2006;18:065113. doi:10.1063/1.2216989
  • Priebe S, Wu M, Martin MP. Direct numerical simulation of a reflected-shock-wave/turbulent-boundary-layer interaction. AIAA J. 2009;47(5):1173–1185. doi:10.2514/1.38821
  • Back LH, Cuffel RF. Changes in heat transfer from turbulent boundary layers interacting with shock waves and expansion waves. AIAA J. 1970;8(10):1871–1873. doi:10.2514/3.6004
  • Roy CJ, Blottner FG. Review and assessment of turbulence models for hypersonic flows. Prog Aerosp Sci. 2006;42:469. doi:10.1016/j.paerosci.2006.12.002
  • Daniel CD, Laizet S, Vassilico JC. Wall shear stress fluctuations: mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer. Phys Fluids. 2017;29:055102. doi:10.1063/1.4984002
  • Grosse S, Schröder W. Wall-shear stress patterns of coherent structures in turbulent duct flow. J Fluid Mech. 2009;633:147–158. doi:10.1017/S0022112009007988
  • Nottebrock B, Genurts KJ, Schröder W. Wall-shear stress measurements in an adverse pressure gradient turbulent boundary layer. 7th AIAA Flow Control Conference 2014, Report No: AIAA-2012-2978.
  • Sreenivasan KR, Antonia RA. Properties of wall shear stress fluctuations in a turbulent duct flow. Trans ASME E: J Appl Mech. 1977;44:389–395. doi:10.1115/1.3424089
  • Zhou Y. Rayleigh–Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I. Phys Rep. 2017;720–722:1–136.
  • Zhou Y. Rayleigh–Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys Rep. 2017;723–725:1–160.
  • Dupont P, Piponniau S, Dussauge J. Compressible mixing layer in shock-induced separation. J Fluid Mech. 2019;863:620–643. doi:10.1017/jfm.2018.987
  • Bernardini M, Pirozzoli S. Wall pressure fluctuations beneath supersonic turbulent boundary layers. Phys Fluids. 2011;23:085102. doi:10.1063/1.3622773
  • Duan L, Choudhari MM, Zhang C. Pressure fluctuations induced by a hypersonic turbulent boundary layer. J Fluid Mech. 2016;804:578–607. doi:10.1017/jfm.2016.548
  • Sun D, Guo QL, Yuan XX, et al. A decomposition formula for the wall heat flux of a compressible boundary layer. Adv Aerodyn. 2021;3:33. doi:10.1186/s42774-021-00081-y
  • Cheng C, Li WP, Duran AL, et al. Identity of attached eddies in turbulent channel flows with bidimensional empirical mode decomposition. J Fluid Mech. 2019;870:1037–1071. doi:10.1017/jfm.2019.272
  • Loginov MS, Adams NA, Zheltovodov AA. Large-eddy simulation of shock-wave/turbulent- boundary-layer interaction. J Fluid Mech. 2006;565:135–169. doi:10.1017/S0022112006000930
  • Grilli M, Hickel S, Adams NA. Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. Int J Heat Fluid FL. 2013;42:79–93. doi:10.1016/j.ijheatfluidflow.2012.12.006
  • Pasquariello V, Hickel S, Adams NA. Unsteady effects of strong shock-wave/boundary-layer interaction at high Reynolds number. J Fluid Mech. 2017;823:617–657. doi:10.1017/jfm.2017.308.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.