93
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Reynolds number effect on the Lagrangian evolution of hairpin vortices in turbulent channel flow

& ORCID Icon
Pages 207-224 | Received 04 Oct 2023, Accepted 28 May 2024, Published online: 25 Jun 2024

References

  • Theodorsen T. Mechanism of turbulence. In: Proceedings of the Second Midwestern Conference on Fluid Mechanics, March 17-19. Columbus (OH): Ohio State University; 1952.
  • Head MR, Bandyopadhyay P. New aspects of turbulent boundary-layer structure. J Fluid Mech. 1981 Jun;107(1):297. doi: 10.1017/S0022112081001791
  • Yanaoka H, Inamura T, Kawabe S. Turbulence and heat transfer of a hairpin vortex formed behind a cube in a laminar boundary layer. Numer Heat Transfer Part A: Applications. 2007 Sep;52(11):973–990. doi: 10.1080/10407780701389590
  • Chu YB, Zhuang YQ, Lu XY. Effect of wall temperature on hypersonic turbulent boundary layer. J Turbulence. 2013 Dec;14(12):37–57. doi: 10.1080/14685248.2013.867348
  • Li H, Yu T, Wang D, et al. Heat-transfer enhancing mechanisms induced by the coherent structures of wall-bounded turbulence in channel with rib. Int J Heat Mass Transf. 2019 Jul;137:446–460. doi: 10.1016/j.ijheatmasstransfer.2019.03.122
  • Kim JS, Hwang J, Yoon M, et al. Influence of a large-eddy breakup device on the frictional drag in a turbulent boundary layer. Phys Fluids. 2017 Jun;29(6):00–00. doi: 10.1063/1.4984602
  • Pouransari Z. Passive scalar small-scale anisotropy and mixing characteristics in magnetohydrodynamic turbulent channel flow. Phys. Fluids. 2023 Oct;35(10):00–00. doi: 10.1063/5.0166192
  • Vanderwel C, Tavoularis S. Scalar dispersion by coherent structures in uniformly sheared flow generated in a water tunnel. J Turbulence. 2016 Jul;17(7):633–650. doi: 10.1080/14685248.2016.1155713
  • Lee JH, Lee J, Sung HJ. Spatial features of the wall-normal structures in a turbulent boundary layer. J Turbulence. 2011 Jan;12:N46. doi: 10.1080/14685248.2011.627860
  • WU X, MOIN P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. J Fluid Mech. 2009 Jul;630:5–41. doi: 10.1017/S0022112009006624
  • Liu C, Yan Y, Al-Dujaly H. DNS study on Hairpin vortex structure in turbulence. In: 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics; 2015.
  • Smith CR, Walker JDA, Haidari AH, et al. On the dynamics of near-wall turbulence. Philos Trans R Soc London Ser A: Physical and Engineering Sciences. 1991 Aug;336(1641):131–175. doi: 10.1098/rsta.1991.0070
  • Van Doorne CW, Westerweel J. The flow structure of a puff. Philos Trans R Soc A: Mathematical, Physical and Engineering Sciences. 2009 Feb;367(1888):489–507. doi: 10.1098/rsta.2008.0227
  • Smith CR. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J Fluid Mech. 1987 Feb;175(1):1–41. doi: 10.1017/S0022112075000651
  • Yan Y, Chen C, Fu H, et al. DNS study on Λ-vortex and vortex ring formation in flow transition at mach number 0.5. J Turbulence. 2014 Jan;15(1):1–21. doi: 10.1080/14685248.2013.871023
  • Zhou J, Adrian RJ, Balachandar S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech. 1999 May;387:353–396. doi: 10.1017/S002211209900467X
  • Li J, Qiu X, Shao Y, et al. Turbulent coherent structures in channel flow with a wall-mounted hemisphere. AIP Adv. 2022 Mar;12(3):035006. doi: 10.1063/5.0079605
  • Eyink GL, Gupta A, Zaki TA. Stochastic Lagrangian dynamics of vorticity. Part 2. Application to near-wall channel-flow turbulence. J Fluid Mech. 2020 Oct;901:A3. doi: 10.1017/jfm.2020.492
  • Zheng W, Yang Y, Chen S. Evolutionary geometry of Lagrangian structures in a transitional boundary layer. Phys Fluids. 2016 Mar;28(3):035110. doi: 10.1063/1.4944047
  • Yang Y, Pullin DI. Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. J Fluid Mech. 2011 May;674:67–92. doi: 10.1017/S0022112010006427
  • Green MA, Rowley CW, Haller G. Detection of Lagrangian coherent structures in three-dimensional turbulence. J Fluid Mech. 2007 Feb;572:111–120. doi: 10.1017/S0022112006003648
  • Zhao Y, Yang Y, Chen S. Lagrangian evolution of hairpin structures in the temporal transition in channel flow. In: 9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015; Vol. 2. Connecticut: Begellhouse; 2015. p. 667–672.
  • Rasam A, Pouransari Z. Numerical investigation of the Lorentz force effect on two-point statistics in a turbulent channel flow. Phys Fluids. 2020 Nov;32(11):115112. doi: 10.1063/5.0025290
  • Hunt JCR, Wray AA, Moin P. Eddies, streams, and convergence zones in turbulent flows. In: Center for Turbulence Research, Proceedings of the Summer Program. Stanford (CA): Stanford University; 1988. p. 193–208.
  • Zhong J, Huang TS, Adrian RJ. Extracting 3D vortices in turbulent fluid flow. IEEE Trans Pattern Anal Mach Intell. 1998;20(2):193–199. doi: 10.1109/34.659938
  • Cucitore R, Quadrio M, Baron A. On the effectiveness and limitations of local criteria for the identification of a vortex. Eur J Mech – B/Fluids. 1999 Mar;18(2):261–282. doi: 10.1016/S0997-7546(99)80026-0
  • Miliou A, Mortazavi I, Sherwin S. Cut-off analysis of coherent vortical structure identification in a three-dimensional external flow. Comptes Rendus Mécanique. 2005 Mar;333(3):211–217.
  • Gunther T, Schulze M, Theisel H. Rotation invariant vortices for flow visualization. IEEE Trans Vis Comput Graph. 2016 Jan;22(1):817–826. doi: 10.1109/TVCG.2015.2467200
  • Liu C, Gao Y, Dong X, et al. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J Hydrodyn. 2019 Apr;31(2):205–223. doi: 10.1007/s42241-019-0022-4
  • Liu C, Wang Y, Yang Y, et al. New omega vortex identification method. Sci China Phys, Mech Astronomy. 2016 Aug;59(8):684711. doi: 10.1007/s11433-016-0022-6
  • Liu C, Gao Y, Tian S, et al. Rortex–A new vortex vector definition and vorticity tensor and vector decompositions. Phys Fluids. 2018 Mar;30(3):035103. doi: 10.1063/1.5023001
  • Acarlar MS, Smith CR. A study of hairpin vortices in a laminar boundary layer. Part 2. Hairpin vortices generated by fluid injection. J Fluid Mech. 1987 Feb;175(1):43. doi: 10.1017/S0022112087000284
  • Kachanov YS. Physical mechanisms of Laminar-Boundary-Layer transition. Annu Rev Fluid Mech. 1994 Jan;26(1):411–482. doi: 10.1146/fluid.1994.26.issue-1
  • Haidari AH, Smith CR. The generation and regeneration of single hairpin vortices. J Fluid Mech. 1994 Oct;277:135–162. doi: 10.1017/S0022112094002715
  • Jiménez J, Hoyas S, Simens MP, et al. Turbulent boundary layers and channels at moderate Reynolds numbers. J Fluid Mech. 2010 Aug;657:335–360. doi: 10.1017/S0022112010001370
  • Eitel-Amor G, Örlü R, Schlatter P, et al. Hairpin vortices in turbulent boundary layers. Phys Fluids. 2015 Feb;27(2):025108. doi: 10.1063/1.4907783
  • Alfonsi G, Primavera L. Vortex identification in the wall region of turbulent channel flow. In: Computational Science – ICCS. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 9–16. (Lecture Notes in Computer Science, vol. 4487).
  • Gao YS, Liu J-M, Yu Y-F. et al. A Liutex based definition and identification of vortex core center lines. J Hydrodyn. 2019 Jun;31(3):445–454. doi: 10.1007/s42241-019-0048-7
  • Pouransari Z, Speetjens MFM, Clercx HJH. Formation of coherent structures by fluid inertia in three-dimensional laminar flows. J Fluid Mech. 2010 Jul;654:5–34. doi: 10.1017/S0022112010001552
  • Kontomaris K, Hanratty TJ, McLaughlin JB. An algorithm for tracking fluid particles in a spectral simulation of turbulent channel flow. J Comput Phys. 1992 Dec;103(2):231–242. doi: 10.1016/0021-9991(92)90398-I
  • Choi JI, Yeo K, Lee C. Lagrangian statistics in turbulent channel flow. Phys Fluids. 2004 Mar;16(3):779–793. doi: 10.1063/1.1644576
  • Yeung PK, Pope SB. An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J Comput Phys. 1988 Dec;79(2):373–416. doi: 10.1016/0021-9991(88)90022-8
  • Pouransari Z, Vervisch L, Johansson AV. Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow, Turbulence Combustion. 2014 Jun;92(4):931–945. doi: 10.1007/s10494-014-9539-3
  • Adrian RJ, Liu ZC. Observation of vortex packets in direct numerical simulation of fully turbulent channel flow. J Visualization. 2002 Mar;5(1):9–19. doi: 10.1007/BF03182598
  • Adrian RJ, Meinhart CD, Tomkins CD. Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech. 2000 Nov;422:1–54. doi: 10.1017/S0022112000001580
  • Robinson SK. Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech. 1991 Jan;23(1):601–639. doi: 10.1146/fluid.1991.23.issue-1
  • Marusic I, Monty JP. Attached Eddy model of wall turbulence. Annu Rev Fluid Mech. 2019 Jan;51(1):49–74. doi: 10.1146/fluid.2019.51.issue-1
  • Dennis DJC, Nickels TB. Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 1. Vortex packets. J Fluid Mech. 2011 Apr;673:180–217. doi: 10.1017/S0022112010006324
  • Deng S, Pan C, Wang J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. J Fluid Mech. 2018 Jun;844:635–668. doi: 10.1017/jfm.2018.160
  • Alfonsi G, Primavera L. Temporal evolution of vortical structures in the wall region of turbulent channel flow. Flow, Turbulence Combust. 2009 Jul;83(1):61–79. doi: 10.1007/s10494-008-9189-4
  • Lund TS, Rogers MM. An improved measure of strain state probability in turbulent flows. Phys Fluids. 1994 May;6(5):1838–1847. doi: 10.1063/1.868440
  • Pouransari Z, Biferale L, Johansson AV. Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets. Phys Fluids. 2015 Feb;27(2):025102. doi: 10.1063/1.4906370
  • Ashurst WT, Kerstein AR, Kerr RM, et al. Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys Fluids. 1987;30(8):2343. doi: 10.1063/1.866513

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.