89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of subgrid-scale models in decaying rotating stratified turbulence

ORCID Icon, &
Pages 225-245 | Received 08 Feb 2024, Accepted 06 Jun 2024, Published online: 18 Jun 2024

References

  • Van Bokhoven LJA, Cambon C, Liechtenstein L, et al. Refined vorticity statistics of decaying rotating three-dimensional turbulence. J Turbul. 2008;9:N6. doi: 10.1080/14685240701877271
  • Marino R, Mininni PD, Rosenberg D, et al. Emergence of helicity in rotating stratified turbulence. Phys Rev E. 2013;87(3):033016. doi: 10.1103/PhysRevE.87.033016
  • Hanazaki H. Linear processes in stably and unstably stratified rotating turbulence. J Fluid Mech. 2002;465:157–190. doi: 10.1017/S0022112002001064
  • Lindborg E. The effect of rotation on the mesoscale energy cascade in the free atmosphere. Geophys Res Lett. 2005;32(1). L01809, 1–4. doi: 10.1029/2004GL021319
  • Liechtenstein L, Godeferd FS, Cambon C. Nonlinear formation of structures in rotating stratified turbulence. J Turbul. 2005;6(6):N24. doi: 10.1080/14685240500207407
  • Noh Y, Long RR. Turbulent mixing in a rotating, stratified fluid. Geophys Astrophys Fluid Dyn. 1990;53(3):125–143. doi: 10.1080/03091929008208925
  • Cambon C. Turbulence and vortex structures in rotating and stratified flows. Eur J Mech B. 2001;20(4):489–510. doi: 10.1016/S0997-7546(01)01126-8
  • Pouquet A, Rosenberg D, Marino R, et al. Scaling laws for mixing and dissipation in unforced rotating stratified turbulence. J Fluid Mech. 2018;844:519–545. doi: 10.1017/jfm.2018.192
  • Hopfinger EJ, Browand FK, Gagne Y. Turbulence and waves in a rotating tank. J Fluid Mech. 1982;125:505–534. doi: 10.1017/S0022112082003462
  • Godeferd FS, Lollini L. Direct numerical simulations of turbulence with confinement and rotation. J Fluid Mech. 1999;393:257–308. doi: 10.1017/S0022112099005637
  • Jacquin L, Leuchter O, Cambonxs C, et al. Homogeneous turbulence in the presence of rotation. J Fluid Mech. 1990;220:1–52. doi: 10.1017/S0022112090003172
  • Bartello P, Métais O, Lesieur M. Coherent structures in rotating three-dimensional turbulence. J Fluid Mech. 1994;273:1–29. doi: 10.1017/S0022112094001837
  • Marino R, Rosenberg D, Herbert C, et al. Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic-potential energy partition. Europhys Lett. 2015;112(4):49001. doi: 10.1209/0295-5075/112/49001
  • Rosenberg D, Pouquet A, Marino R, et al. Evidence for bolgiano-obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations. Phys Fluids. 2015;27(5):055105. doi: 10.1063/1.4921076
  • Rosenberg D, Marino R, Herbert C, et al. Variations of characteristic time scales in rotating stratified turbulence using a large parametric numerical study. Eur Phys J E. 2016;39(1):1–12. doi: 10.1140/epje/i2016-16008-7
  • Cambon C, Godeferd FS, Nicolleau FCGA, et al. Turbulent diffusion in rapidly rotating flows with and without stable stratification. J Fluid Mech. 2004;499:231–255. doi: 10.1017/S0022112003007055
  • Pouquet A, Rosenberg D, Marino R. Linking dissipation, anisotropy, and intermittency in rotating stratified turbulence at the threshold of linear shear instabilities. Phys Fluids. 2019;31(10):105116. doi: 10.1063/1.5114633
  • Buaria D, Pumir A, Feraco F, et al. Single-particle Lagrangian statistics from direct numerical simulations of rotating-stratified turbulence. Phys Rev Fluids. 2020;5(6):064801. doi: 10.1103/PhysRevFluids.5.064801
  • M Wan TL, Wang J, Chen S. Spectral energy transfers and kinetic-potential energy exchange in rotating stratified turbulence. Phys Rev Fluids. 2020;5(12):124804. doi: 10.1103/PhysRevFluids.5.124804
  • Klema M, Venayagamoorthy SK, Pouquet A, et al. Effect of rotation on mixing efficiency in homogeneous stratified turbulence using unforced direct numerical simulations. Environ Fluid Mech. 2022;23: 1–16.
  • Smith LM, Chasnov JR, Waleffe F. Crossover from two-to three-dimensional turbulence. Phys Rev Lett. 1996;77(12):2467–2470. doi: 10.1103/PhysRevLett.77.2467
  • Greenspan HP. The theory of rotating fluids. Vol. Cambridge, England: Cambridge University Press; 1968.
  • Molinari J, Vollaro D. Distribution of helicity, CAPE, and shear in tropical cyclones. J Atmos Sci. Jan 2010;67(1):274–284. doi: 10.1175/2009JAS3090.1
  • Lilly DK. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J Atmos Sci. Jan 1986;43(2):126–140. doi: 10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2
  • Marino R, Mininni PD, Rosenberg D, et al. Inverse cascades in rotating stratified turbulence: fast growth of large scales. Europhys Lett. Jun 2013;102(4):44006. doi: 10.1209/0295-5075/102/44006
  • Choi H, Moin P. Grid-point requirements for large eddy simulation: Chapman's estimates revisited. Phys Fluids. 2012;24(1):011702. doi: 10.1063/1.3676783
  • Smagorinsky J. General circulation experiments with the primitive equations. I. The basic experiment. Mon Weath Rev. 1963;91:99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid scale eddy viscosity model. Phys Fluids A. 1991;3(7):1760–1765. doi: 10.1063/1.857955
  • Ghosal S, Lund TS, Moin P, et al. A dynamic localization model for large-eddy simulation of turbulent flows. J Fluid Mech. 1995;286:229–255. doi: 10.1017/S0022112095000711
  • Rozema W, Bae HJ, Moin P, et al. Minimum-dissipation models for large-eddy simulation. Phys Fluids. 2015;27(8):085107. doi: 10.1063/1.4928700
  • Agrawal R, Whitmore MP, Griffin KP, et al. Non-Boussinesq subgrid-scale model with dynamic tensorial coefficients. Phys Rev Fluids. 2022;7:074602. doi: 10.1103/PhysRevFluids.7.074602
  • Remmler S, Hickel S. Spectral structure of stratified turbulence: direct numerical simulations and predictions by large eddy simulation. Theor Comput Fluid Dyn. Jun 2013;27(3):319–336. doi: 10.1007/s00162-012-0259-9
  • Kang HS, Chester S, Meneveau C. Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech. 2003;480:129–160. doi: 10.1017/S0022112002003579
  • Vreman B, Geurts B, Kuerten H. Large-eddy simulation of the turbulent mixing layer. J Fluid Mech. 1997;339:357–390. doi: 10.1017/S0022112097005429
  • Kobayashi H, Shimomura Y. The performance of dynamic subgrid-scale models in the large eddy simulation of rotating homogeneous turbulence. Phys Fluids. 2001;13(8):2350–2360. doi: 10.1063/1.1380688
  • Shao L, Zhang ZS, Cui GX, et al. Subgrid modeling of anisotropic rotating homogeneous turbulence. Phys Fluids. 2005;17(11):115106. doi: 10.1063/1.2130748
  • Yang X, Domaradzki JA. Large eddy simulations of decaying rotating turbulence. Phys Fluids. 2004;16(11):4088–4104. doi: 10.1063/1.1790452
  • CJ Rutland HL, Smith LM. A priori tests of one-equation les modeling of rotating turbulence. J Turbul. 2007; 35(8):N37.
  • Remmler S, Hickel S. Direct and large eddy simulation of stratified turbulence. Int J Heat Fluid Flow. 2012;35:13–24. doi: 10.1016/j.ijheatfluidflow.2012.03.0097th Symposium on Turbulence & Shear Flow Phenomena (TSFP7).
  • Paoli R, Thouron O, Escobar J, et al. High-resolution large-eddy simulations of sub-kilometer-scale turbulence in the upper troposphere lower stratosphere. Atmos Chem Phys Discuss. Dec 2013;13:31891–31932.
  • Khani S, Waite ML. Buoyancy scale effects in large-eddy simulations of stratified turbulence. J Fluid Mech. 2014;754:75–97. doi: 10.1017/jfm.2014.381
  • Khani S, Waite ML. Large eddy simulations of stratified turbulence: the dynamic smagorinsky model. J Fluid Mech. 2015;773:327–344. doi: 10.1017/jfm.2015.249
  • Clark RA, Ferziger JH, Reynolds WC. Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J Fluid Mech. 1979;91(1):1–16. doi: 10.1017/S002211207900001X
  • Leonard A. Energy cascade in large-eddy simulations of turbulent fluid flows. In: Frenkiel FN and Munn RE, editors. Turbulent diffusion in environmental pollution. New York, NY, Elsevier; 1975. p. 237–248 (Advances in Geophysics; vol. 18).
  • Germano M, Piomelli U, Moin P, et al. A dynamic subgrid scale eddy viscosity model. Phys Fluids. 1991;3:1760–1765. doi: 10.1063/1.857955
  • Lilly DK. A proposed modification of the germano subgrid-scale closure method. Phys Fluids A. 1992;4(3):633–635. doi: 10.1063/1.858280
  • Wang B-C, Bergstrom DJ. A dynamic nonlinear subgrid-scale stress model. Phys Fluids. 2005;17(3):035109. doi: 10.1063/1.1858511
  • Pope SB. Turbulent flows. Cambridge: UK; IOP Publishing; 2001.
  • Lilly DK. The representation of small-scale turbulence in numerical simulation experiments. In: IBM Form. 1967. p. 195–210.
  • Liu S, Meneveau C, Katz J. Experimental study of similarity subgrid-scale models of turbulence in the far-field of a jet. Appl Sci Res. 1995;54(3):177–190. doi: 10.1007/BF00849115
  • Tao B, Katz J, Meneveau C. Statistical geometry of subgrid-scale stresses determined from holographic particle image velocimetry measurements. J Fluid Mech. 2002;457:35–78. doi: 10.1017/S0022112001007443
  • Anderson R, Meneveau C. Effects of the similarity model in finite-difference LES of isotropic turbulence using a Lagrangian dynamic mixed model. Flow Turbul Combust. 1999;62(3):201–225. doi: 10.1023/A:1009967228812
  • Pope SB. A more general effective-viscosity hypothesis. J Fluid Mech. 1975;72(2):331–340. doi: 10.1017/S0022112075003382
  • Rahimi A, Chandy AJ. Direct numerical simulations of non-helical and helical stratified turbulent flows. J Turbul. 2016;17(1):1–29. doi: 10.1080/14685248.2015.1078469
  • Agrawal R, Chandy AJ. Large eddy simulations of forced and stably stratified turbulence: evolution, spectra, scaling, structures and shear. Int J Heat Fluid Flow. 2021;89:108778. doi: 10.1016/j.ijheatfluidflow.2021.108778
  • Jadhav K, Chandy AJ. Assessment of SGS models for large eddy simulation (LES) of a stratified Taylor–Green vortex. Flow Turbul Combust. 2021;106:37–60. doi: 10.1007/s10494-020-00175-5
  • Lindborg E. The energy cascade in a strongly stratified fluid. J Fluid Mech. 2006;550:207–242. doi: 10.1017/S0022112005008128
  • Zhou Y. Turbulence theories and statistical closure approaches. Phys Rep. 2021;935:1–117. doi: 10.1016/j.physrep.2021.07.001
  • Zhou Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. ii. Phys Rep. 2017;723–725:1–160. doi: 10.1016/j.physrep.2017.07.008
  • Staplehurst PJ, Davidson PA, Dalziel SB. Structure formation in homogeneous freely decaying rotating turbulence. J Fluid Mech. 2008;598:81–105. doi: 10.1017/S0022112007000067
  • Domaradzki JA. Autonomous large-eddy simulations of turbulence using eddy viscosity derived from the subgrid-scale similarity stress tensor. J Fluid Mech. 2024;985:A48. doi: 10.1017/jfm.2024.212
  • Nabavi M, Kim J. Optimising subgrid-scale closures for spectral energy transfer in turbulent flows. J Fluid Mech. 2024;982:A18. doi: 10.1017/jfm.2024.101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.