1,615
Views
12
CrossRef citations to date
0
Altmetric
Engineering and structural materials

Plastic accommodation at homophase interfaces between nanotwinned and recrystallized grains in an austenitic duplex-microstructured steel

ORCID Icon, , , , &
Pages 29-36 | Received 28 Jul 2015, Accepted 24 Nov 2015, Published online: 01 Mar 2016

References

  • Bhadeshia HKDH, Honeycombe R. Steels. Microstructure and properties. Oxford: Elsevier Ltd; 2006.
  • Speich GR, Miller RL. Mechanical properties of ferrite-martensite steels, structure and properties of dual-phase steels. In: TMS-AIME, Kot RA, Morris JW, editor. Structure and Properties of Dual-Phase Steels. Metallurgical Society of AIME. Warrendale (PA); 1979. p. 145–182.
  • Rashid MS. Dual-phase steels. Annu Rev Mater Sci. 1981;11:245.10.1146/annurev.ms.11.080181.001333
  • Calcagnotto M, Ponge D, Raabe D. Effect of grain refinement to 1mm on strength and toughness of dual-phase steels. Mater Sci Eng A. 2010;527:7832.
  • Kadkhodapour J, Schmauder S, Raabe D, et al. Experimental and numerical study on geometrically necessary dislocations and non-homogenous mechanical properties of the ferrite phase in dual phase steels. Acta Mater. 2011;59:4387.10.1016/j.actamat.2011.03.062
  • Calcagnotto M, Ponge D, Demir E, et al. Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A. 2010;527:2738.10.1016/j.msea.2010.01.004
  • Jiang Z, Guan Z, Lian J. Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater Sci Eng A. 1995;190:55.10.1016/0921-5093(94)09594-M
  • Ghassemi-Armaki H, Maas R, Bhat SP, et al. Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater. 2014;62:197.10.1016/j.actamat.2013.10.001
  • Delinc- M, Jacques PJ, Pardoen T. Separation of size-dependent strengthening contributions in fine-grained Dual Phase steels by nanoindentation. Acta Mater. 2006;54:3395.10.1016/j.actamat.2006.03.031
  • Delincé M, Bréchet Y, Embury JD, et al. Structure–property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Mater. 2007;55:2337.10.1016/j.actamat.2006.11.029
  • Woo W, Em VT, Kim E-Y, et al. Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater. 2012;60:6972.10.1016/j.actamat.2012.08.054
  • Ramazani A, Mukherjee K, Schwedt A, et al. Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int J Plast. 2013;43:128.10.1016/j.ijplas.2012.11.003
  • Chen P, Ghassemi-Armaki H, Kumar S, et al. Microscale-calibrated modeling of the deformation response of dual-phase steels. Acta Mater. 2014;65:133.10.1016/j.actamat.2013.11.036
  • Tsuji N, Ueji R, Minamino Y. Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process. Scripta Mater. 2002;47:69.10.1016/S1359-6462(02)00088-X
  • Chen XH, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Mater. 2005;52:1039.10.1016/j.scriptamat.2005.01.023
  • Weng Y. Ultra-fine grained steels. Berlin: Springer-Verlag; 2009.
  • Lu K, Yan FK, Wang HT, et al. Strengthening austenitic steels by using nanotwinned austenitic grains. Scripta Mater. 2012;66:878.10.1016/j.scriptamat.2011.12.044
  • Wang HT, Tao NR, Lu K. Strengthening an austenitic Fe–Mn steel using nanotwinned austenitic grains. Acta Mater. 2012;60:4027.10.1016/j.actamat.2012.03.035
  • Yan FK, Liu GZ, Tao NR, et al. Strength and ductility of 316L austenitic stainless steel strengthened by nano-scale twin bundles. Acta Mater. 2012;60:1059.10.1016/j.actamat.2011.11.009
  • Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel. Acta Mater. 2012;60:5791.10.1016/j.actamat.2012.07.018
  • Gutierrez-Urrutia I, Raabe D. Microbanding mechanism in a Fe-22Mn-0.6C (wt.%) high-Mn twinning induced plasticity steel. Scripta Mater. 2013;69:53.10.1016/j.scriptamat.2013.03.010
  • Li S, Gazder AA, Beyerlein IJ, et al. Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route. Acta Mater. 2007;55:1017.10.1016/j.actamat.2006.09.022
  • Yan FK, Tao NR, Archie F, et al. Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nanotwinned grains. Acta Mater. 2014;81:487.10.1016/j.actamat.2014.08.054
  • Nes E. Modelling of work hardening and stress saturation in FCC metals. Prog Mater Sci. 1998;41:129.
  • Kocks UF, Mecking H. Physics and phenomenology of strain hardening: the FCC case. Prog Mater Sci. 2003;48:171.10.1016/S0079-6425(02)00003-8
  • Sauzay M, Kubin LP. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog Mater Sci. 2011;56:725.10.1016/j.pmatsci.2011.01.006
  • Kuhlmann-Wilsdorf D. Theory of plastic deformation:-properties of low energy dislocation structures. Mater Sci Eng A. 1989; 113:1.10.1016/0921-5093(89)90290-6
  • Kuhlmann-Wilsdorf D. “Regular” deformation bands (DBs) and the LEDS hypothesis. Acta Mater. 1999;47:1697.10.1016/S1359-6454(98)00413-3
  • Asgari S, El-Danaf E, Kalidindi SR, et al. Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins. Metall Mater Trans A. 1997;28:1781.10.1007/s11661-997-0109-3
  • Hughes DA, Hansen N. Microstructure and strength of nickel at large strains. Acta Mater. 2000;48:2985.10.1016/S1359-6454(00)00082-3
  • Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39:1.10.1016/0079-6425(94)00007-7
  • Humphreys FJ, Kalu PN. The plasticity of particle-containing polycrystals. Acta Metall Mater. 1990;38:917.10.1016/0956-7151(90)90164-C
  • Ashby MF. The deformation of plastically non-homogeneous materials. Phil Mag. 1970;21:399.10.1080/14786437008238426
  • Humphreys FJ. Local lattice rotations at second phase particles in deformed metals. Acta Metall. 1979;27:1801.10.1016/0001-6160(79)90071-3
  • Li YS, Tao NR, Lu K. Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 2008;56:230.10.1016/j.actamat.2007.09.020
  • Zhao Z, Ramesh M, D Raabe, et al. Investigation of three-dimensional aspects of grain-scale plastic surface deformation of an aluminum oligocrystal. Int. J. Plast. 2008;24:2278.10.1016/j.ijplas.2008.01.002
  • Gutierrez-Urrutia I, Zaefferer S, Raabe D. The effect of grain size and grain orientation on deformation twinning in a Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. Mater Sci Eng A. 2010;527:3552.10.1016/j.msea.2010.02.041
  • Wright SI, Nowell MM, Field DP. A Review of Strain Analysis Using Electron Backscatter Diffraction. Microsc Microanal. 2011;17:316.10.1017/S1431927611000055
  • Schwartz AJ, Kumar M, Adams BL, Field DP. Electron backscatter diffraction in materials science. New York (NY): Springer; 2009.
  • Hirth JP. The Influence of Grain Boundaries on Mechanical Properties. Metall Trans. 1972;3:3047.10.1007/BF02661312
  • Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2010;58:1152.10.1016/j.actamat.2009.10.058
  • Raabe D, Sachtleber M, Zhao Z, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity. Experimantion and simulation. Acta Mater. 2001;49:3433.10.1016/S1359-6454(01)00242-7
  • Bieler TR, Eisenlohr P, Roters F, et al. The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. Int J Plast. 2009;25:1655.10.1016/j.ijplas.2008.09.002
  • Arsenault RJ, Fishman S, Taya M. Deformation and fracture behavior of metal-ceramic matrix composite materials. Prog Mater Sci. 1994;38:1.10.1016/0079-6425(94)90002-7
  • Steinmetz DR, J ein T, Wietbrock B, et al. Revealing the strain hardening behavior of twinning induced plasticity steels through a dislocation density- and twin evolution-based constitutive model: theory, simulations, experiments. Acta Mater. 2013;61:494.10.1016/j.actamat.2012.09.064
  • Bieler TR, Eisenlohr P, Zhang C, et al. Grain boundaries and interfaces in slip transfer. Curr Opin Solid State Mater Sci. 2014;18:212.
  • Zaefferer S. On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy. 2007;107:254.
  • Querin JA, Schneider JA, Horstemeyer MF. Analysis of micro void formation at grain boundary triple points in monotonically strained AA6022-T43 sheet metal. Mater Sci Eng A. 2007;463:101.10.1016/j.msea.2006.10.167
  • Livingston JD, Chalmers B. Multiple slip in bicrystal deformation. Acta Metall. 1957;5:32210.1016/0001-6160(57)90044-5.
  • Bieler TR, Fallahi A, Ng BC, et al. Fracture initiation/propagation parameters for duplex TiAl grain boundaries based on twinning, slip, crystal orientation, and boundary misorientation. Intermetallics. 2005;13:979.