2,624
Views
25
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Modeling of metastable phase formation diagrams for sputtered thin films

, , , , &
Pages 210-219 | Received 15 Dec 2015, Accepted 15 Mar 2016, Published online: 04 May 2016

References

  • Petrov I, Barna PB, Hultman L, et al. Microstructural evolution during film growth. J. Vac. Sci. Technol. A. 2003;21:S117–28.10.1116/1.1601610
  • Grovenor CRM, Hentzell HTG, Smith DA. The development of grain structure during growth of metallic films. Acta Metall. 1984;32:773–781.
  • Barna PB, Adamik M. Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films. 1998;317:27–33.10.1016/S0040-6090(97)00503-8
  • Einstein A. Elementare Theorie der Brownschen Bewegung. Z. Elektrochem. 1908;14:235–239.10.1002/bbpc.v14:17
  • Cantor B, Cahn R. Metastable alloy phases by co-sputtering. Acta Metall. 1976;24:845–852.
  • Ohring M. Materials science of thin films: deposition and structure. New York, NY: Academic; 2002.
  • Saunders N, Miodownik AP. Phase formation in co-deposited metallic alloy thin films. J. Mater. Sci. 1987;22:629–637.10.1007/BF01160780
  • Cremer R, Witthaut M, Neuschütz D Experimental determination of the metastable (Ti,Al)N phase diagram up to 700 °C. In: Value addition metallurgy. Warrendale: The Minerals, Metals & Materials Society; 1998. p. 249–258
  • Cremer R, Neuschütz D. Optimization of (Ti, Al)N hard coatings by a combinatorial approach Int. J. Inorg. Mater. 2001;3:1181–1184.10.1016/S1466-6049(01)00121-0
  • Gebhardt T, Music D, Takahashi T, et al. Combinatorial thin film materials science: From alloy discovery and optimization to alloy design. Thin Solid Films. 2012;520:5491–5499.10.1016/j.tsf.2012.04.062
  • Wang Q, Itaka K, Minami H, et al. Combinatorial pulsed laser deposition and thermoelectricity of (La1-xCax)VO3 composition-spread films Sci. Tech. Advan. Mater. 2004;5:543–547.10.1016/j.stam.2004.03.003
  • Mardare AI, Ludwig A, Savan A, et al. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library. Sci. Tech. Advan. Mater. 2014; 15:015006.
  • Saunders N, Miodownik AP. The use of free energy vs composition curves in the prediction of phase formation in codeposited alloy thin films. CALPHAD. 1985;9:283–290.
  • Holleck H. Metastable coatings - prediction of composition and structure. Surf. Coat. Technol. 1988;36:151–159.10.1016/0257-8972(88)90145-4
  • Spencer P. Thermodynamic prediction of metastable coating structures in PVD process. Z. Metallkd. 2001;92:1145–1150.
  • Mayrhofer PH, Music D, Schneider JM. Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti1-xAlxN. J. Appl. Phys. 2006;100:094906.10.1063/1.2360778
  • Mayrhofer PH, Music D, Reeswinkel Th, et al. Structure, elastic properties and phase stability of Cr1-xAlxN. Acta Mater. 2008;56:2469–2475.10.1016/j.actamat.2008.01.054
  • Rovere F, Music D, Schneider JM, et al. Experimental and computational study on the effect of yttrium on the phase stability of sputtered Cr-Al-Y-N hard coatings. Acta Mater. 2010;58:2708–2715.
  • Chang K, to Baben M, Music D, et al. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Mater. 2015;98:135–140.10.1016/j.actamat.2015.07.029
  • Vüllers FTN, Spolenak R. From solid solutions to fully phase separated interpenetrating networks in sputter deposited “immiscible” W-Cu thin films. Acta Mater. 2015;99:213–227.10.1016/j.actamat.2015.07.050
  • Park J-H, Moon D-Y, Han D-S, et al. Self-forming barrier characteristics of Cu–V and Cu–Mn films for Cu interconnects. Thin Solid Films. 2013;547:141–145.10.1016/j.tsf.2013.04.052
  • Cao F, Wu GH, Jiang L–T, et al. Application of Cu–C and Cu–V alloys in barrier-less copper metallization. Vacuum. 2015;122:122–126.
  • Park J-H, Kang M-S, Han D-S, et al. Effects of UV curing on the self-forming barrier process of Cu-V alloy films. Surf. Coat. Technol. 2015;276:254–259.10.1016/j.surfcoat.2015.06.049
  • Welzel U, Mittemeijer EJ. Diffraction stress analysis of macroscopically elastically anisotropic specimens: On the concepts of diffraction elastic constants and stress factors. J. Appl. Phys. 2003;93:9001–9011.10.1063/1.1569662
  • Welzel U, Mittemeijer EJ. Diffraction stress analysis of elastic grain interaction in polycrystalline materials. Z. Kristallogr. 2007;222:160–173.
  • Vitos L. Total-energy method based on the exact muffin-tin orbitals theory. Phys. Rev. B. 2001;64:014107.10.1103/PhysRevB.64.014107
  • Andersen K, Jepsen O, Krier G. Lecture on methods of electronic structure calculations. Singapore: World Scientific; 1995. p. 63–124.
  • Vitos L, Skriver HL, Johansson B, et al. Application of the exact muffin-tin orbitals theory: the spherical cell approximation. Comput. Mater. Sci. 2000;18:24–38.
  • Vitos L, Kollár J, Skriver HL. Full charge-density scheme with a kinetic-energy correction: Application to ground-state properties of the 4d metals. Phys. Rev. B. 1997;55:13521.10.1103/PhysRevB.55.13521
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868.10.1103/PhysRevLett.77.3865
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186.10.1103/PhysRevB.54.11169
  • Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775.10.1103/PhysRevB.59.1758
  • Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979.10.1103/PhysRevB.50.17953
  • Monkhorst HJ, Pack JD. Special points for brillouin-zone integrations. Phys. Rev. B. 1976;13:5188–5192.10.1103/PhysRevB.13.5188
  • Subramanian PR, Laughlin DE. The Cu-W (Copper-Tungsten) system phase diagrams of binary Tungsten alloys. Calcutta: Indian Institute of Metals; 1991. p. 76–79.
  • Zhao J, Du Y, Zhang L, et al. Thermodynamic reassessment of the Cu–V system supported by key experiments. Calphad. 2008;32:252–255.10.1016/j.calphad.2007.07.009
  • Bale CW, Bélisle E, Chartrand P, et al. FactSage thermochemical software and databases-recent developments. Calphad. 2009;33:295–311.10.1016/j.calphad.2008.09.009
  • Dinsdale AT. SGTE data for pure elements. CALPHAD. 1991;15:317–425.
  • JCPDS card No. 4-836, International Center for Diffraction Data, JCPDF-ICDD.
  • JCPDS card No. 4-806, International Center for Diffraction Data, JCPDF-ICDD.
  • JCPDS card No. 22-1058, International Center for Diffraction Data, JCPDF-ICDD.
  • Thompson CV. structure evolution during processing of polycrystalline films. Ann. Rev. Mater. Sci. 2000;30:159–190.10.1146/annurev.matsci.30.1.159
  • Dirks AG, Van den Broek JJ. Metastable solid-solutions in vapor-deposited Cu–Cr, Cu–Mo, and Cu–W thin-films. J. Vac. Sci. Technol. A. 1985;3:2618–2622.10.1116/1.572799
  • Nastasi M, Saris FW, Hung LS, et al. Stability of amorphous Cu/Ta and Cu/W alloys. J. Appl. Phys. 1985;58:3052–3058.10.1063/1.335855
  • Rizzo HF, Massalski TB, Nastasi M. Metastable crystalline and amorphous structures formed in the Cu–W system by vapor deposition. Metall Trans A. 1993;24:1027–1037.10.1007/BF02657233
  • Zong RL, Wen SP, Zeng F, et al. Nanoindentation studies of Cu–W alloy films prepared by magnetron sputtering. J. Alloys Compd. 2008;464:544–549.10.1016/j.jallcom.2007.10.033
  • Engelhardt MA, Jaswal SS, Sellmyer DJ. Electronic-structure of amorphous and disordered crystalline Cu–W alloys of similar composition. Solid State Commun. 1990;75:663–665.10.1016/0038-1098(90)90220-6
  • Radić N, Gržeta B, Gracin D, et al. Preparation and structure of Cu–W thin films. Thin Solid Films. 1993;228:225–228.
  • Gržeta B, Radić N, Gracin D, et al. Crystallization of Cu50W50 and Cu66W34 amorphous alloys. J. Non Cryst. Solids. 1994;170:101–104.10.1016/0022-3093(94)90109-0
  • Radić N, Stubicar M. Microhardness properties of Cu–W amorphous thin films. J. Mater. Sci. 1998;33:3401–3405.
  • Zhou L, Wang M, Peng K, et al. Structure characteristic and its evolution of Cu–W films prepared by dual-target magnetron sputtering deposition. Trans. Nonferrous. Met. Soc. China. 2012;22:2700–2706.10.1016/S1003-6326(11)61520-3
  • Straumanis ME, Yu LS. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu‒In α phase. Acta Cryst. 1969;25:676–68210.1107/S0567739469001549
  • Szalkowski FJ, Somorjai GA. The characterization of some vanadium (100) surface using LEED and AES. J. Chem. Phys. 1976;64:2985–2989.10.1063/1.432557