1,790
Views
13
CrossRef citations to date
0
Altmetric
Focus on nanomedicine molecular science

Enhanced cellular uptake of lactosomes using cell-penetrating peptides

, , , , &
Pages 245-252 | Received 17 Feb 2016, Accepted 11 Apr 2016, Published online: 08 Jun 2016

References

  • Durymanov MO, Rosenkranz AA, Sobolev AS. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines, Theranostics. 2015;5:1007. 10.7150/thno.11742
  • Ndeboko B, Lemamy GJ, Nielsen PE, et al. Therapeutic Potential of Cell penetrating Peptides (CPPs) and Cationic Polymers for Chronic Hepatitis B, Int J Mol Sci. 2015;16:28230–28241. 10.3390/ijms161226094
  • Allen TM, Cullis PR. Liposomal drug delivery systems: From concept to clinical applications, Adv Drug Deliv Rev. 2013;65:36. 10.1016/j.addr.2012.09.037
  • Deng C, Jiang Y, Cheng R, et al. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects, Nano Today. 2012;7:467. 10.1016/j.nantod.2012.08.005
  • Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies, J Control Release. 2014;190:465. 10.1016/j.jconrel.2014.06.042
  • Arvizo RR, Bhattacharyya S, Kudgus RA, et al. Intrinsic Therapeutic Applications of Noble Metal Nanoparticles: Past, Present and Future, Chem Soc Rev. 2012;41:2943. 10.1039/c2cs15355f
  • Kesharwani P, Jain K, Jain NK. Dendrimer as nanocarrier for drug delivery, Prog Polym Sci. 2014;39:268. 10.1016/j.progpolymsci.2013.07.005
  • Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer, Int J Nanomedicine. 2014;9:467.
  • Wicki A, Witzigmann D, Balasubramanian V, et al. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications, J Control Release. 2015;200:138. 10.1016/j.jconrel.2014.12.030
  • Makino A, Yamahara R, Ozeki E, et al. Preparation of Novel Polymer Assemblies, “Lactosome”, Composed of Poly(L-lactic acid) and Poly(sarcosine), Chem Lett. 2007;36:1220. 10.1246/cl.2007.1220
  • Makino A, Kizaka-Kondoh S, Yamahara R, et al. Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide, Biomaterials. 2009;30:5156. 10.1016/j.biomaterials.2009.05.046
  • Tanisaka H, Kizaka-Kondoh S, Makino A, et al. Near-Infrared Fluorescent Labeled Peptosome for Application to Cancer Imaging, Bioconjug Chem. 2008;19:109. 10.1021/bc7001665
  • Makino A, Hara E, Hara I, et al. Control of in vivo blood clearance time of polymeric micelle by stereochemistry of amphiphilic polydepsipeptides, J Control. Release. 2012;161:821. 10.1016/j.jconrel.2012.05.006
  • Hara E, Makino A, Kurihara K, et al. Pharmacokinetic change of nanoparticulate formulation “Lactosome” on multiple administrations, Int Immunopharmacol. 2012;14:261. 10.1016/j.intimp.2012.07.011
  • Hara E, Ueda M, Makino A, et al. Factors Influencing in Vivo Dosposition of Polymeric Micelles on Multiple Administrations, ACS Med Chem Lett. 2014;5:873. 10.1021/ml500112u
  • Matsumura Y, Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs, Cancer Res. 1986;46:6387.
  • Wang F, Wang Y, Zhang X, et al. Recent progress of cell-penetrating peptides as new carriers for intercellular cargo delivery, J Control Release. 2014;174:126. 10.1016/j.jconrel.2013.11.020
  • Copolovici DM, Langel K, Eriste E, et al. Cell-Penetrating Peptides: Design, Synthesis, and Applications, ACS Nano. 2014;8:1972. 10.1021/nn4057269
  • Endoh T, Ohtsuki T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape, Adv Drug Deliv Rev. 2009;61:704. 10.1016/j.addr.2009.04.005
  • Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus, Cell. 1988;55:1189. 10.1016/0092-8674(88)90263-2
  • Vives E, Brodin P, Lebleu B. A Truncated HIV-1 Tat Protein Basic Domain Rapidly Translocates through the Plasma Membrane and Accumulates in he Cell Nucleus, J Biol Chem. 1997;272:16010. 10.1074/jbc.272.25.16010
  • De Coupade C, Fittipaldi, A., Changas, V., et al. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules, Biochem J. 2005;390:407. 10.1042/BJ20050401
  • Ho A, Schwarze SR, Mermelstein SJ, et al. Synthetic Protein Transduction Domains: Enhanced Transduction Potential in Vitro and in Vivo, Cancer Res. 2001;61:474.
  • Simeoni F, Morris MC, Heitz F, et al. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells, Nucleic Acids Res. 2003;31:2717. 10.1093/nar/gkg385
  • Morris MC, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells, Nat Biotechnol. 2001;19:1173. 10.1038/nbt1201-1173
  • Lundberg P, El-Andaloussi S, Sutlu T, et al. Delivery of short interfering RNA using endosomolytic cell-penetrating peptides, FASEB J. 2007;21:2664. 10.1096/fj.06-6502com
  • Canete M, Villanueva A, Dominguez V, et al. Meso-tetraphenylporphyrin: photosensitizing properties and cytotoxic effects on cultured tumor cells, Int J Oncol. 1998;13:497.
  • Shimizu Y, Temma T, Hara I, et al. Micelle-based activatable probe for in vivo near-infrared optical imaging of cancer biomolecules, Nanomedicine. 2014;10:187.
  • Cabral H, Matsumoto, Y., Mizuno, K., et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size, Nat Nanotechnol. 2011;6:815. 10.1038/nnano.2011.166