1,310
Views
1
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

NEXAFS study of electronic and atomic structure of active layer in Al/indium tin oxide/TiO2 stack during resistive switching

, ORCID Icon, , , , & show all
Pages 274-284 | Received 18 Nov 2015, Accepted 22 Apr 2016, Published online: 24 Jun 2016

References

  • Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater. 2006;5:312–320. 10.1038/nmat1614
  • Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature. 2004;433:47–50.
  • Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater. 2007;6:833–840. 10.1038/nmat2023
  • Sawa A. Resistive switching in transition metal oxides. Mater Today. 2008;11:28–36. 10.1016/S1369-7021(08)70119-6
  • Yi HT, Choi T, Cheong S-W. Reversible colossal resistance switching in (La,Pr,Ca)MnO3: Cryogenic nonvolatile memories. Appl Phys Lett. 2009;95:063509–63511. 10.1063/1.3204690
  • Watanabe Y, Bednorz JG, Bietsch A, et al. Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals. Appl Phys Lett. 2001;78:3738–3740. 10.1063/1.1377617
  • Beck A, Bednorz JG, Gerber CH, et al. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett. 2000;77:139–141. 10.1063/1.126902
  • Liu SQ, Wu NJ, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett. 2000;76:2749–2751. 10.1063/1.126464
  • Choi BJ, Jeong DS, Kim SK. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys. 2005;98:033715–33724. 10.1063/1.2001146
  • Wu X, Zhou P, Li J, et al. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl Phys Lett. 2007;90:183507–183509. 10.1063/1.2734900
  • Xu N, Liu LF, Liu XY, et al. Characteristics and mechanism of conduction/set process in TiN∕ZnO∕Pt resistance switching random-access memories. Appl Phys Lett. 2008;92:232112–232114. 10.1063/1.2945278
  • Rohde C, Choi BJ, Jeong DS, et al. Identification of a determining parameter for resistive switching of thin films. Appl Phys Lett. 2005;86:262907–262909. 10.1063/1.1968416
  • Choi BJ, Choi S, Kim KM, et al. Study on the resistive switching time of TiO2 thin films. Appl Phys Lett. 2006;89:012906–12908. 10.1063/1.2219726
  • Rossel C, Meijer GI, Bremaud D, et al. Electrical current distribution across a metal–insulator–metal structure during bistable switching. J Appl Phys. 2001;90:2892–2898. 10.1063/1.1389522
  • Strukov DB, et al. The missing memristor found. Nature. 2008;453:80–83. 10.1038/nature06932
  • Meijer GI. Who Wins the Nonvolatile Memory Race. Science. 2008;319:1625–1626. 10.1126/science.1153909
  • Kwon D-H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol. 2010;5:148–153. 10.1038/nnano.2009.456
  • Soni R, Meuffels P, Kohlstedt H, et al. Reliability analysis of the low resistance state stability of Ge0.3Se0.7 based solid electrolyte nonvolatile memory cells. Appl Phys Lett. 2009;94:123503–123505. 10.1063/1.3103555
  • Schindler C, Staikov G, Waser R. Electrode kinetics of Cu–SiO2-based resistive switching cells: Overcoming the voltage-time dilemma of electrochemical metallization memories. Appl Phys Lett. 2009;94:072109–72111. 10.1063/1.3077310
  • Russo U, Kamalanathan D, Ielmini D, et al. Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory. IEEE Trans Electron Devices. 2009;56:1040–1047. 10.1109/TED.2009.2016019
  • Chang SH, et al. Effects of heat dissipation on unipolar resistance switching in capacitors. Appl Phys Lett. 2008;92:183507–183509. 10.1063/1.2924304
  • Choi SJ, Park GS, Kim KH, et al. In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid Electrolyte Memory. Adv Mater. 2011;23:3272–3277. 10.1002/adma.201100507
  • Waser R, Dittmann R, Staikov G, et al. Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges. Adv Mater. 2009;21:2632–2663. 10.1002/adma.v21:25/26
  • Yang YC, Pan F, Zeng F. Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories: active region and influence of Joule heating. New J Phys. 2010;12:023008–23018. 10.1088/1367-2630/12/2/023008
  • Yang M, Pei-Jian Z, Zi-Yu L, et al. Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches. Chin Phys B. 2010;19:037304–37308. 10.1088/1674-1056/19/3/037304
  • Wang L-G, Qian X, Cao Y-Q, et al. Excellent resistive switching properties of atomic layer-deposited Al2O3/HfO2/Al2O3 trilayer structures for non-volatile memory applications. Nanoscale Res Lett. 2015;10:254028–142. 10.1186/s11671-015-0846-y
  • Xu J, Yang Z, Zhang Y, et al. Bipolar resistive switching behaviours in ZnMnO film deposited on p-Si substrate by chemical solution deposition. Bull Mater Sci. 2014;37:1657–1661. 10.1007/s12034-014-0731-9
  • Chae SC. Random Circuit Breaker Network Model for Unipolar Resistance Switching. Adv Mater. 2008;20:1154–1159. 10.1002/adma.v20:6
  • Zhu X-J, Shang J, Li R-W. An overview of materials issues in resistive random access memory. Front Mater Sci. 2012;6:183–206.
  • Lanza M, Zhang K, Porti M, et al. Grain boundaries as preferential sites for resistive switching in the HfO2 resistive random access memory structures. Appl Phys Lett. 2012;100:123508–123511. 10.1063/1.3697648
  • Lanza M, Bersuker G, Porti M, et al. Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries. Appl Phys Lett. 2012;101:193502–193506. 10.1063/1.4765342
  • Zhuge F, Peng S, He C, et al. Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnol. 2011;22:275204–275210. 10.1088/0957-4484/22/27/275204
  • Filatova EO, Baraban AP, Konashuk A, et al. Transparent-conductive-oxide (TCO) buffer layer effect on the resistive switching process in metal/ TiO2/TCO/metal assemblies. New J Phys. 2014;16:113014–113029. 10.1088/1367-2630/16/11/113014
  • Stöhr J. NEXAFS Spectroscopy. Berlin: Springer; 1992. 10.1007/978-3-662-02853-7
  • Hähner G. Near edge X-ray absorption fine structure spectroscopy as a tool to probe electronic and structural properties of thin organic films and liquids. Chem. Soc. Rev. 2006;35:1244–1255. 10.1039/B509853J
  • Fano U, Cooper JW. Spectral Distribution of Atomic Oscillator Strengths. Rev Mod Phys. 1968;40:441–507. 10.1103/RevModPhys.40.441
  • Fischer DW. X-Ray Band Spectra and Molecular-Orbital Structure of Rutile TiO2. Phys Rev B. 1972;5:4219–4226. 10.1103/PhysRevB.5.4219
  • Stoyanov E. The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. Am. Mineral. 2007;92:557–586.
  • Groot FMF, Figueiredo MO, Basto MJ, et al. 2p X-ray Absorption of Titanium in Minerals. Phys Chem Miner. 1992;19:140–147. 10.1007/BF00202101
  • Groot FMF, Faber J, Michiels JJM, et al. Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations. Phys Rev B. 1993;48:2074–2080. 10.1103/PhysRevB.48.2074
  • Rath S, Gracia F, Yubero F, et al. Angle dependence of the O K edge absorption spectraof TiO2 thin films with preferential texture. Nucl Instrum Methods Phys Res B. 2003;200:248–254. 10.1016/S0168-583X(02)01686-5
  • Filatova E, Taracheva E, Shevchenko G, et al. Atomic ordering in TiO2 thin films studied by X-ray reflection spectroscopy. Phys Status Solidi B. 2009;246:1454–1458. 10.1002/pssb.v246:7
  • Brydson R, Sauer H, Engel W, et al. Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural sensitivity. J Phys: Condens Matter. 1989;1:797–812.
  • Groot FMF, Fuggle JC, Thole BT, et al. L2,3 x-ray-absorption edges of d0 compounds: K+, Ca2+, Sc3+, and Ti4+ in Oh (octahedral) symmetry. Phys Rev B. 1990;41:928–937. 10.1103/PhysRevB.41.928
  • Ruus R, Kikas A, Saar A, et al. Ti 2p and O1s X-ray absorption of TiO2 polymorphs. Solid State Commun. 1997;104:199–203. 10.1016/S0038-1098(97)00300-1
  • Kucheyev SO, Buuren T, Baumann TF, et al. Electronic structure of titania aerogels from soft x-ray absorption spectroscopy. Phys Rev B. 2004;69:245102–245108. 10.1103/PhysRevB.69.245102
  • Casu MB, Braun W, Bauchspieß K R, et al. A multi-technique investigation of TiO2 films prepared by magnetron sputtering. Surf Sci. 2008;602:1599–1606. 10.1016/j.susc.2008.02.030
  • Filatova EO, Sokolov A A, Egorova Yu V, et al. X-ray spectroscopic study of SrTiOx films with different interlayers. J Appl Phys. 2013;113:224301–224309. 10.1063/1.4809978
  • Muller DA, Nakagawa N, Ohtomo A, et al. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature. 2004;430:657–661. 10.1038/nature02756
  • Ravel B, Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat. 2005;12:537–541. 10.1107/S0909049505012719
  • Chen JG. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf Sci Rep. 1997;30:1–152. 10.1016/S0167-5729(97)00011-3
  • Gouttebaron R, Cornelissen D, Snyders R, et al. XPS study of TiOx thin films prepared by d.c. magnetron sputtering in Ar–O2 gas mixtures. Surf Interface Anal. 2000;30:527–530. 10.1002/(ISSN)1096-9918
  • Diebold U, Madey TE. TiO2 by XPS. Surf Sci Spectra. 1998;4:227–231.
  • Scanlon DO, Dunnill C W, Buckeridge J, et al. Band alignment of rutile and anatase TiO2. Nat Mater. 2013;12:798–801. 10.1038/nmat3697
  • Kuiper P, Dunlap B. The σ* absorption peak at the oxygen 1s edge of O2: Exchange splitting, ultrafast dissociation, and atomiclike Auger spectra. J Chem Phys. 1994;100:4087–4092. 10.1063/1.466346
  • Dargouthi S, Boughdiri S, Tangour B. Stabilizing of the Transitory Species (TiO2)2 by Encapsulation Into Carbon Nanotubes. Acta Chim Slov. 2015;62:445–451. 10.17344/acsi.2014.1080
  • Kwon D-H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol. 2010;5:148–153. 10.1038/nnano.2009.456
  • Yang JJ, Miao F, Pickett M D, et al. The mechanism of electroforming of metal oxide memristive switches. Nanotechnol. 2009;20:215201–215210. 10.1088/0957-4484/20/21/215201
  • Huang J-J, Kuo C-W, Chang W-C, et al. Transition of stable rectification to resistive-switching in Ti/TiO2/Pt oxide. Appl Phys Lett. 2010;96:262901–262904. 10.1063/1.3457866
  • Mehonic A, Buckwell M, Montesi L, et al. Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory. J Appl Phys. 2015;117:124505–124513. 10.1063/1.4916259