2,104
Views
20
CrossRef citations to date
0
Altmetric
Focus on nanomedicine molecular science

Crosslinked duplex DNA nanogels that target specified proteins

, , &
Pages 285-292 | Received 28 Feb 2016, Accepted 07 May 2016, Published online: 18 Jul 2016

References

  • Heneghan HM, Miller N, Lowery AJ, et al. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. J. Ann Surg. 2010;251:499–505. doi:10.1097/SLA.0b013e3181cc939f.
  • Ross JS, Slodkowska EA, Symmans WF, et al. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14:320–368. doi:10.1634/theoncologist.2008-0230.
  • Ravipati S, Baldwin DR, Barr HL, et al. Plasma lipid biomarker signatures in squamous carcinoma and adenocarcinoma lung cancer patients. Metabolomics. 2015;11:1600–1611. doi:10.1007/s11306-015-0811-x.
  • Drake PM, Cho W, Li B, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clin. Chem. 2010;56:223–236. doi:10.1373/clinchem.2009.136333.
  • Kosaka, N., Iguchi, H., Ochiya, T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci.;101: 2087-2092. doi:10.1111/j.1349-7006.2010.01650.x.
  • Yap TA, Lorente D, Omlin A, et al. Circulating tumor cells: a multifunctional biomarker. Clin. Cancer Res. 2014;20:2553–2568. doi:10.1158/1078-0432.
  • Rusling JF, Kumar CV, Gutkind JS, et al. Measurement of biomarker proteins for point-of-care early detection and monitoring of cancer. Analyst. 2010;135:2496–2511. doi:10.1039/c0an00204f.
  • Luka G, Ahmadi A, Najjaran H, et al. Microfluidics integrated biosensors: a leading technology towards lab-on-a-chip and sensing applications. Sensors. 2015;15:30011–30031. doi:10.3390/s151229783.
  • Derkus B. Applying the miniaturization technologies for biosensor design. Biosens Bioelectron. 2016;79:901–913. doi:10.1016/j.bios.2016.01.033.
  • Howes PD, Chandrawati R, Stevens MM. Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. Science. 2014;346:1247390. doi:10.1126/science.1247390.
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci. Tech. Adv. Mater. 2012;13:064101. doi:10.1088/1468-6996/13/6/064101.
  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. Why do phospholipid polymers reduce protein adsorption ? J. Biomed. Mater. Res. 1998;39:323–330.
  • Ishihara K, Hasegawa T, Watanabe J, et al. Protein adsorption-resistant hollow fibers for blood purification. Artif Organs. 2002;26:1014–1019. doi:10.1046/j.1525-1594.2002.07039.x.
  • Ishihara K, Takai M. Bioinspired interface for nanobiodevices based on phospholipid polymer chemistry. J. R. Soc. Interface. 2009;6:S279–S291. doi:10.1098/rsif.2008.0335.
  • Matsuno R, Ishihara K. Molecular-integrated phospholipid polymer nanoparticles with highly biofunctionality. Macromol. Symp. 2009;279:125–131. doi:10.1002/masy.200950519.
  • Kinoshita K, Fujimoto K, Yakabe T, et al. Multiple primer extension by DNA polymerase on a novel plastic DNA array coated with a biocompatible polymer. Nucleic Acids Res. 2007;35:e3. doi:10.1093/nar/gkl939.
  • Iwasaki Y, Takami U, Shinohara Y, et al. Selective biorecognition and preservation of cell function on carbohydrate-immobilized phosphorylcholine polymers. Biomacromolecules. 2007;8:2788–2794. doi:10.1021/bm700478d.
  • Goto Y, Matsuno R, Konno T, et al. Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromolecules. 2008;9:3252–3257. doi:10.1021/bm800819r.
  • Goto Y, Matsuno R, Konno T, et al. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules. 2008;9:828–833. doi:10.1021/bm701161d.
  • Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem. Rec. 2010;10:366–376. doi:10.1002/tcr.201000008.
  • Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv. Drug Deliv. Rev. 2015;95:65–76. doi:10.1016/j.addr.2015.10.004.
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010;9:537–550. doi:10.1038/nrd3141.
  • Mann KG, Brummel K, Butenas S. What is all that thrombin for? J. Thromb. Haemost. 2003;1:1504–1514. doi:10.1046/j.1538-7836.2003.00298.x.
  • Pabinger I, Thaler J, Ay C. Biomarkers for prediction of venous thromboembolism in cancer. Blood. 2013;122:2011–2018. doi:10.1182/blood-2013-04-460147.
  • Deng B, Lin Y, Wang C, et al. Aptamer binding assays for proteins: the thrombin example–a review. Anal. Chim. Acta. 2014;837:1–15. doi:10.1016/j.aca.2014.04.055.
  • Cho H, Baker BR, Wachsmann-Hogiu S, et al. Aptamer-based SERRS sensor for thrombin detection. Nano Lett. 2008;8(12):4386–4390. doi:10.1021/nl802245w; C.
  • Bock LC, Griffin LC, Latham JA, et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992;355:564–566. doi:10.1038/355564a0.
  • Russo Krauss I, Merlino A, Giancola C, et al. Thrombin-aptamer recognition: a revealed ambiguity. Nucleic Acids Res. 2011;39:7858–7867. doi:10.1093/nar/gkr522.
  • Zhu Z, Wu C, Liu H, et al. An aptamer cross-linked hydrogel as a colorimetric platform for visual detection. Angew Chem. Int. Ed. 2010;49:1052–1056. doi:10.1002/anie.200905570.
  • Kenney M, Ray S, Boles TC. Mutation typing using electrophoresis and gel-immobilized Acrydite probes. Biotechniques. 1998;25:516–521.
  • Kang H, Liu H, Zhang X, et al. Photoresponsive DNA-cross-linked hydrogels for controllable release and cancer therapy. Langmuir. 2011;27:399–408. doi:10.1021/la1037553.
  • Yin BC, Ye BC, Wang H, et al. Colorimetric logic gates based on aptamer-crosslinked hydrogels. Chem. Commun. 2012;48:1248–1250. doi:10.1039/c1cc15639j.
  • Yan L, Zhu Z, Zou Y, et al. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J. Am. Chem. Soc. 2013;135:3748–3751. doi:10.1021/ja3114714.
  • Wei X, Tian T, Jia S, et al. Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (μDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Anal. Chem. 2016;88:2345–2352. doi:10.1021/acs.analchem.5b04294.
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Ed. 2009;48:5418–5429. doi:10.1002/anie.200900441.
  • Tamura A, Oishi M, Nagasaki Y. Efficient siRNA delivery based on PEGylated and partially quaternized polyamine nanogels: enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J. Control. Release. 2010;146:378–387. doi:10.1016/j.jconrel.2010.05.031.
  • Yin XB, Xin YY, Zhao Y. Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)32+-double-strand DNA composite film electrode. Anal. Chem. 2009;81:9299–9305. doi:10.1021/ac901609g.
  • Wang X, Wang X. Aptamer-functionalized hydrogel diffraction gratings for the human thrombin detection. Chem. Commun. 2013;49:5957–5959. doi:10.1039/c3cc41827h.
  • Liu Y, Liu N, Ma X, et al. Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis. Analyst. 2015;140:2762–2770. doi:10.1039/c5an00081e.
  • Li B, Wei H, Dong S. Sensitive detection of protein by an aptamer-based label-free fluorescing molecular switch. Chem. Commun. 2007;73–75: doi:10.1039/B612080F.
  • Byrne CD, de Mello AJ. Photophysics of ethidium bromide complexed to ct-DNA: a maximum entropy study. Biophys. Chem. 1998;70:173–184. doi:10.1016/S0301-4622(97)00091-4.
  • Iliuk AB, Hu L, Tao WA. Aptamer in bioanalytical applications. Anal. Chem. 2011;83:4440–4452. doi:10.1021/ac201057w.