3,096
Views
30
CrossRef citations to date
0
Altmetric
Focus on nanomedicine molecular science

Cytocompatible and multifunctional polymeric nanoparticles for transportation of bioactive molecules into and within cells

, , , &
Pages 300-312 | Received 29 Feb 2016, Accepted 12 May 2016, Published online: 06 Jul 2016

References

  • Kim JW, Cho J, Cho J, et al. Synthesis of monodisperse bi-compartmentalized amphiphilic janus microparticles for tailored assembly at the oil–water interface Angew. Chem Int Ed. 2016;55:4509–4513. 10.1002/anie.201600209
  • Abe H, Liu J, Ariga K. Catalytic nanoarchitectonics for environmentally compatible energy generation. Mater Today. 2016;19(1):12–18.10.1016/j.mattod.2015.08.021
  • Shin T-H, Choi Y, Kim S, et al. Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev. 2015;44:4501–4516. 10.1039/C4CS00345D
  • Wang H, Liu S, Zhang Y-L, et al. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing. Sci Technol Adv Mater. 2015;16 (2015) 024805 (7pp)
  • Sheng Y, De Liao LD, Thakor NV, et al. Nanoparticles for molecular imaging. J Biomed Nanotechnol. 2014;10(10):2641–2676. 10.1166/jbn.2014.1937
  • Tang Y, Cheng W. Key parameters governing metallic nanoparticle electrocatalysis. Nanoscale. 2015;7:16151–16164. 10.1039/C5NR02298C
  • Wu W, Wu Z, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015; 16. 023501(43pp)
  • Kim S-J, Xu W, Ahmad MD, et al. Synthesis of nanoparticle CT contrast agents: in vitro and in vivo studies. Sci Technol Adv Mater. 2015;16. 055003 (9pp).
  • Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization: novel pathways to multifunctional nanoparticles. Trends Biochem. Sci. 2016;41:190–203. 10.1016/j.tibs.2015.11.011
  • Wang Z, Yu J, Gui R, et al. Carbon nanomaterials-based electrochemical aptasensors. Biosens Bioelectron. 2016;79:136–149. 10.1016/j.bios.2015.11.093
  • Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm. 2015;496(2):191–218.10.1016/j.ijpharm.2015.10.058
  • Samiei M, Farjami A, Dizaj SM, et al. Nanoparticles for antimicrobial purposes in Endodontics: A systematic review of in vitro studies. Mater Sci Eng C Mater Biol. 2016;58:1269–1278. 10.1016/j.msec.2015.08.070
  • Passos ML, Pinto PC, Santos JL, et al. Nanoparticle-based assays in automated flow systems: a review. Anal Chim Acta. 2015;889:22–34. 10.1016/j.aca.2015.05.052
  • Mou X, Ali Z, Li S, et al. Applications of magnetic nanoparticles in targeted drug delivery system. J Nanosci Nanotechnol. 2015;15(1):54–62.10.1166/jnn.2015.9585
  • Mekaru H, Lu J, Tamanoi F. Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy. Adv Drug Deliv Rev. 2015;95:40–49. 10.1016/j.addr.2015.09.009
  • Loos C, Syrovets T, Musyanovych A, et al. Functionalized polystyrene nanoparticles as a platform for studying bio-nano interactions. Beilstein J Nanotechnol. 2014;5:2403–2412. 10.3762/bjnano.5.250
  • Pissuwan D, Niidome T. Polyelectrolyte-coated gold nanorods and their biomedical applications. Nanoscale. 2015;7(1):59–65.10.1039/C4NR04350B
  • Bernsen MR, Guenoun J, van Tiel ST, et al. Nanoparticles and clinically applicable cell tracking. Br J Radiol. 2015;88(1054): 20150375.
  • Soenen SJ, Parak WJ, Rejman J, et al. (Intra)Cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115(5):2109–2135.10.1021/cr400714j
  • Doh KO, Yeo Y. Application of polysaccharides for surface modification of nanomedicines. Ther Deliv. 2012;3(12):1447–1456.10.4155/tde.12.105
  • Yang H-M, Park C-W, Ahn T, et al. A direct surface modification of iron oxide nanoparticles with various poly(amino acid)s for use as magnetic resonance probes. J Colloid Interface Sci. 2013;391:158–167. 10.1016/j.jcis.2012.09.044
  • Huynh R, Chaubet F, Jozefonvicz J. Anticoagulant properties of dextranmethylcarboxylate benzylamide sulfate (DMCBSu); a new generation of bioactive functionalized dextran. Carbohydrate Res. 2001;332:75–83. 10.1016/S0008-6215(01)00066-0
  • Lemarchand C, Gref R, Couvreur P. Polycaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58(2):327–341.10.1016/j.ejpb.2004.02.016
  • Rabanel J-M, Hildgen P, Banquy X. Assessment of PEG on polymeric particles surface, a key step in drug carrier translation. J Controlled Release. 2014;185:71–87. 10.1016/j.jconrel.2014.04.017
  • Suk J-S, Xu Q, Kim N, et al. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Delivery Rev. 2016;99 Part A:28–51. 10.1016/j.addr.2015.09.012
  • Shimizu T, Mima Y, Hashimoto Y, et al. Anti-PEG IgM and complement system are required for the association of second doses of PEGylated liposomes with splenic marginal zone B cells. Immunobiology. 2015;220(10):1151–1160. 10.1016/j.imbio.2015.06.005
  • Mima Y, Hashimoto Y, Shimizu T, et al. Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol Pharm. 2015;12(7):2429–2435.10.1021/acs.molpharmaceut.5b00144
  • Wang C, Cheng X, Su Y, et al. Accelerated blood clearance phenomenon upon cross-administration of PEGylated nanocarriers in beagle dogs. Int J Nanomedicine 10 3533–3545.
  • Puri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res. 2011;44(10):1071–1079. 10.1021/ar2001843
  • Monge S, Canniccioni B, Graillot A, et al. Phosphorus-containing polymers: a great opportunity for the biomedical field. Biomacromolecules. 2011;12(6):1973–1982. 10.1021/bm2004803
  • Ruiz L, Hilborn JG, Léonard D, et al. Synthesis, structure and surface dynamics of phosphorylcholine functional biomimicking polymers. Biomaterials. 1998;19(11-12):987–998. 10.1016/S0142-9612(97)00197-X
  • Nagase Y, Nakajima S, Oku M, et al. Synthesis and properties of segmented poly(urethane-urea)s containing phosphorylcholine moiety in the side-chain. Polym J. 2008;40(12):1149–1156. 10.1295/polymj.PJ2008158
  • Ishihara K, Ueda T, Nakabayashi N. Preparation of phospholipid polymers and properties as hydrogel membranes. Polym J. 1990;22:355–360. 10.1295/polymj.22.355
  • Ishihara K, Fukazawa K. 2-Methacryloyloxyethyl phosphorylcholine polymer. In Monge S and David G, editor. Phosphorus-based polymers: from synthesis to applications Chapter 5. Cambridge, UK: RSC publishing; 2014. p. 68–96. 10.1039/2044-0804
  • Ueda T, Oshida H, Kurita K, et al. Preparation of 2-methacryloyloxyethyl phosphorylcholine copolymers with alkyl methacrylates and their blood compatibility. Polym J. 1992;24(11):1259–1269. 10.1295/polymj.24.1259
  • Ishihara K, Aragaki R, Ueda T, et al. Reduced thrombogenicity of polymers having phospholipid polar groups. J Biomed Mater Res. 1990;24:1069–1077. 10.1002/(ISSN)1097-4636
  • Ishihara K, Ziats NP, Tierney BP, et al. Protein adsorption from human plasma is reduced on phospholipid polymers. J Biomed Mater Res. 1991;25:1397–1407. 10.1002/(ISSN)1097-4636
  • Ishihara K, Nomura H, Mihara T, et al. Why do phospholipid polymer reduce protein adsorption ? J Biomed Mater Res. 1998;39:323–330. 10.1002/(ISSN)1097-4636
  • Moro T, Takatori Y, Ishihara K, et al. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat Mater. 2004;3(11):829–836. 10.1038/nmat1233
  • Ishihara K. Bioinspired phospholipid polymer biomaterials for making high performance artificial organs. Sci Technol Adv Mater. 2000;1:131–138. 10.1016/S1468-6996(00)00012-7
  • Iwasaki Y, Ishihara K. Phosphorylcholine-containing polymers for biomedical applications. Ann Bioanal Chem. 2005;381:534–546. 10.1007/s00216-004-2805-9
  • Lewis AL, Lloyd AW. Biomedical applications of biomimetic polymers: the phosphorylcholine-containing polymers in biomimetic, bioresponsive, and bioactive materials. In: Santin M and Phillips G, editors. An Introduction to Integrating Materials with Tissues. Hoboken (NJ): Wiley; 2012, p. 95–140.
  • Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13. 064101 (14p).
  • Ishihara K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym J. 2015;47(9):585–597.10.1038/pj.2015.45
  • Kihara S, Yamazaki K, Litwak KN, et al. In vivo evaluation of a mpc polymer coated continuous flow left ventricular assist system. Artif Organs. 2003;27(2):188–192. 10.1046/j.1525-1594.2003.t01-2-06993.x
  • Lewis AL, Vick TA, Collias AC, et al. 2001. Phosphorylcholine-based polymer coatings for stent drug delivery. J Mater Sci Mater Med. 12(10/12) 865–870. 10.1023/A:1012803503667
  • Zhang Z, Cao X, Zhao X, et al. Controlled delivery of antisense oligodeoxynucleotide from cationically modified phosphorylcholine polymer films. Biomacromolecules. 2006;7(3):784–791. 10.1021/bm050840b
  • Zhong Q, Yan J, Qian X, et al. Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Colloids Surf B Biointerfaces. 2014;121:238–247. 10.1016/j.colsurfb.2014.06.022
  • Shimada T, Ueda M, Jinno H, et al. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 2009;29:1009–1014.
  • Miyata R, Ueda M, Jinno H, et al. Selective targeting by preS1 domain of hepatitis B surface antigen conjugated with phosphorylcholine-based amphiphilic block copolymer micelles as a biocompatible, drug delivery carrier for treatment of human hepatocellular carcinoma with paclitaxel. Int J Cancer. 2009;124(10):2460–2467. 10.1002/ijc.v124:10
  • McRae Page SM, Henchey E, Chen X, et al. Efficacy of polyMPC–DOX prodrugs in 4t1 tumor-bearing mice. Mol Pharmaceutics. 2014;11:1715–1720. 10.1021/mp500009r
  • Kano T, Kakinuma C, Wada S, et al. Enhancement of drug solubility and absorption by copolymers of 2-Methacryloyloxyethyl phosphorylcholine and n-butyl methacrylate. Drug Metab Pharmacokinet. 2011;26(1):79–86. 10.2133/dmpk.DMPK-10-RG-070
  • Onoue S, Kojo Y, Suzuki H, et al. Development of novel solid dispersion of tranilast using amphiphilic block copolymer for improved oral bioavailability. Int J Pharm. 2013;452(1-2):220–226.10.1016/j.ijpharm.2013.05.022
  • Onoue S, Suzuki H, Kojo Y, et al. Self-micellizing solid dispersion of cyclosporine A with improved dissolution and oral bioavailability. Eur J Pharm Sci. 2014;62:16–22.10.1016/j.ejps.2014.05.006
  • Ukawa M, Akita H, Masuda T, et al. 2-Methacryloyloxyethyl phosphorylcholine polymer (MPC)-coating improves the transfection activity of GALA-modified lipid nanoparticles by assisting the cellular uptake and intracellular dissociation of plasmid DNA in primary hepatocytes. Biomaterials. 2010;31(24):6355–6362.10.1016/j.biomaterials.2010.04.031
  • Wen Y, Zhang Z, Li J. Highly efficient multifunctional supermolecular gene carrier system self-assembled from redox-sensitive and zwitterionic polymer blocks. Adv Funct Mater. 2014;24:3874–3884.10.1002/adfm.v24.25
  • Lam JK, Armes SP, Lewis AL, et al. Folate conjugated phosphorylcholine-based polycations for specific targeting in nucleic acids delivery. J Drug Target. 2009;17(7):512–523.10.1080/10611860903023312
  • Qiang G, Lee I. Kinetics of swelling-shrinking rearrangement of a self-aggregated nanohydrogel at solid/liquid interfaces. J Exp Nanosci. 2011;6(5):509–520.10.1080/17458080.2010.487223
  • Xu S, Ye Z, Wu P. Biomimetic controlling of CaCO3 and BaCO3 superstructures by zwitterionic polymer. ACS Sustainable Chem Eng. 2015;3:1810–1818.10.1021/acssuschemeng.5b00387
  • Jin S, Zhou N, Xu D, et al. Synthesis and characterization of poly(2-methacryloyloxyethyl phosphorylcholine) onto graphene oxide. Polym Adv Technol. 2013;24:685–691. 10.1002/pat.v24.7
  • Dai F, Zhang M, Hu B, et al. Immunomagnetic nanoparticles based on a hydrophilic polymer coating for sensitive detection of Salmonella in raw milk by polymerase chain reaction. RSC Advence. 2015;5:3574–3580.10.1039/C4RA09799H
  • Peacock AK, Cauët SI, Taylor A, et al. Poly[2-(methacryloyloxy)ethylphosphorylcholine]-coated iron oxide nanoparticles: synthesis, colloidal stability and evaluation for stem cell labelling. Chem Commun (Camb). 2012;48(75):9373–9375.10.1039/c2cc34420c
  • Sun XY, Yu SS, Wan JQ, et al. Facile graft of poly(2-methacryloyloxyethyl phosphorylcholine) onto Fe(3) O(4) nanoparticles by ATRP: synthesis, properties, and biocompatibility. J Biomed Mater Res A. 2013;101A(2):607–612. 10.1002/jbm.a.v101a.2
  • Li X, Zhang B, Tian L, et al. Improvement of recognition specificity of surface protein-imprinted magnetic microspheres by reducing nonspecific adsorption of competitors using 2-methacryloyloxyethyl phosphorylcholine. Snes Actu B: Chemical. 2015;208:559–568.10.1016/j.snb.2014.11.045
  • Yokoyama R, Suzuki S, Shirai K, et al. Preparation and properties of biocompatible polymer-grafted silica nanoparticle. Eur Polym J. 2006;42:3221–3229.10.1016/j.eurpolymj.2006.08.015
  • Müllner M, Cui J, Noi KF, et al. Surface-initiated polymerization within mesoporous silica spheres for the modular design of charge-neutral polymer particles. Langmuir. 2014;30(21):6286–6293. 10.1021/la501324r
  • Shao Z, Yang Y, Lee H, et al. Synthesis and suspension rheology of titania nanoparticles grafted with zwitterionic polymer brushes. J Colloid Interface Sci. 2012;386(1):135–140.10.1016/j.jcis.2012.06.085
  • Fuchs AV, Walter C, Landfester K, et al. Biomimetic silver-containing colloids of poly(2-methacryloyloxyethyl phosphorylcholine) and their film-Formation properties. Langmuir. 2012;28(11):4974–4983.10.1021/la204673z
  • Fuchs AV, Ritz S, Putz S, et al 2-13. Bioinspired phosphorylcholine containing polymer films with silver nanoparticles combining antifouling and antibacterial properties. Biomater Sci. 1 470–477.
  • Kitayama Y, Takeuchi T. Localized surface plasmon resonance nanosensing of C-reactive protein with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted gold nanoparticles prepared by surface-initiated atom transfer radical polymerization. Anal Chem. 2014;86(11):5587–5594. 10.1021/ac501322x
  • Chen X, Lawrence J, Parelkar S, et al. Novel zwitterionic copolymers with dihydrolipoic acid: synthesis and preparation of nonfouling nanorods. Macromolecules. 2013;46:119–127.10.1021/ma301288m
  • Bortolotto T, Facchinetto ST, Trindade SG, et al. Polymer-coated palladium nanoparticle catalysts for Suzuki coupling reactions. J Colloid Interface Sci. 2015;439:154–161.10.1016/j.jcis.2014.10.037
  • Matsuno R, Goto Y, Konno T, et al. Controllable nanostructured surface modification on quantum dot for biomedical application in aqueous medium. J Nanosci Nanotechnol. 2009;9(1):358–365. 10.1166/jnn.2009.J082
  • Liu Y, Inoue Y, Ishihara K. Surface functionalization of quantum dots with fine-structured pH-sensitive phospholipid polymer chains. Colloids Surf B: Biointerfaces. 2015;135:490–496. 10.1016/j.colsurfb.2015.08.001
  • Xu FM, Xu JP, Lv L-P, et al. Bowl- and porous sphere-shaped supramolecular assemblies and their application as templates for confirmed assembly of gold nanoparticles. Soft Matter. 2011;7:1114–1120.10.1039/C0SM00763C
  • Goto Y, Matsuno R, Konno T, et al. Polymer nanoparticles covered with phosphorylcholine groups and immobilized with antibody for high-affinity separation of proteins. Biomacromolecules. 2008;9(3):828–833. 10.1021/bm701161d
  • Kim HI, Ishihara K. Phospholipid polymer can reduce cytocompatibility of poly(lactic acid) nanoparticles in a high-content screening assay. Biomater Biomed Engineer. 2014;1(2):85–94.
  • Chen W, Inoue Y, Ishihara K. Preparation of photoreactive phospholipid polymer nanoparticles to immobilize and release protein by photoirradiation. Colloids Surf B: Biointerfaces. 2015;135:365–370. 10.1016/j.colsurfb.2015.07.073
  • Osawa K, Imae T, Ujihara M, et al. Preparation of amphiphilic diblock copolymers with pendant hydrophilic phosphorylcholine and hydrophobic dendron groups and their self-association behavior in water. J Polym Sci Polym. Chem. 2013;51(22):4923–4931.10.1002/pola.v51.22
  • Han H, Zhang S, Wang Y, et al. Biomimetic drug nanocarriers prepared by miniemulsion polymerization for near-infrared imaging and photothermal therapy. Polymer. 2016;82:255–261.10.1016/j.polymer.2015.11.022
  • Ishihara K, Iwasaki Y, Nakabayashi N. Polymeric lipid nanosphere constituted of poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) Polym. J. 1999;31:1231–1236.
  • Konno T, Ishihara K. Enhanced solubility of paclitaxel using water-soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. J Biomed Mater Res. 2003;65A(2):210–215.
  • Lobb EJ, Ma I, Billingham NC, et al. Facile synthesis of well-defined, biocompatible phosphorylcholine-based methacrylate copolymers via atom transfer radical polymerization at 20 °C. J Am Chem Soc. 2001;123(32):7913–7914. 10.1021/ja003906d
  • Yusa S-I, Fukuda K, Yamamoto T, et al. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules. 2005;6(2):663–670. 10.1021/bm0495553
  • Shen L. Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater. 2011;2(4):355–372. 10.3390/jfb2040355
  • Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev. 2015;44(14):4792–4834. 10.1039/C4CS00532E
  • Wang Y, Hu R, Lin G, et al. Functionalized quantum dots for biosensing and bioimaging and concerns on toxicity. ACS Appl Mater Interfaces. 2013;5(8):2786–2799. 10.1021/am302030a
  • Tripathi SK, Kaur G, Khurana RK, et al. Quantum dots and their potential role in cancer theranostics. Crit Rev Ther Drug Carrier Syst. 2015;32(6):461–502. 10.1615/CritRevTherDrugCarrierSyst.v32.i6
  • Petryayeva E, Algar WR, Medintz IL. Quantum dots in bioanalysis: a review of applications across various platforms for fluorescence spectroscopy and imaging. Appl Spectrosc. 2013;67(3):215–252. 10.1366/12-06948
  • Hu K, Wang H, Tang G, et al. In vivo cancer dual-targeting and dual-modality imaging with functionalized quantum dots. J Nucl Med. 2015;56(8):1278–1284. 10.2967/jnumed.115.158873
  • Liu H, Tang W, Li C, et al. CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Res Lett. 2015;10(1):959.
  • Breus VV, Pietuch A, Tarantola M, et al. The effect of surface charge on nonspecific uptake and cytotoxicity of CdSe/ZnS core/shell quantum dots. Beilstein J Nanotechnol. 2015;6:281–292. 10.3762/bjnano.6.26
  • Painuly D, Bhatt A, Krishnan VK. Physicochemical and in vitro biocompatibility evaluation of water-soluble CdSe/ZnS core/shell. J Biomater Appl. 2014;28(8):1125–1137. 10.1177/0885328213499194
  • Jańczewski D, Tomczak N, Han M-Y, et al. Synthesis of functionalized amphiphilic polymers for coating quantum dots. Nat Protocols. 2011;6(10):1546–1553. 10.1038/nprot.2011.381
  • Reissmann S. Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci. 2014;20(10):760–784. 10.1002/psc.v20.10
  • Brock R. The uptake of arginine-rich cell-penetrating peptides: putting the puzzle together. Bioconjug Chem. 2014;25(5):863–868. 10.1021/bc500017t
  • Goto Y, Matsuno R, Konno T, et al. Artificial cell membrane-covered nanoparticles embedding quantum dots as stable and highly sensitive fluorescence bioimaging probes. Biomacromolecules. 2008;9(11):3252–3257. 10.1021/bm800819r
  • Watanabe J, Ishihara K. Instantaneous determination via bimolecular recognition: usefulness of FRET in phosphorylcholine group enriched nanoparticles. Bioconjug Chem. 2007;18(6):1811–1817. 10.1021/bc070095v
  • Konno T, Watanabe J, Ishihara K. Conjugation of enzymes on polymer nanoparticles covered with phosphorylcholine groups. Biomacromolecules. 2004;5(2):342–347. 10.1021/bm034356p
  • Ito T, Watanabe J, Takai M, et al. Dual mode bioreactions on polymer nanoparticles covered with phosphorylcholine group. Colloids Surf B Biointerfaces. 2006;50(1):55–60. 10.1016/j.colsurfb.2006.04.006
  • Ishihara K, Tsukamoto Y, Goto Y, et al. Enhanced and specific internalization of polymeric nanoparticles to cells. IFMBE Proceedings. 2013;49:262–265. 10.1007/978-3-642-32183-2
  • Ishihara K. Novel bioinspired phospholipid polymer biomaterials for nanobioengineering. In: Ruiz-Molina D, Novio F, Roscini C, editors. Bio- and bioinspired nanomaterials. Weinhelm, Germany: Wiley-VCH; 2015. p. 369–389.