8,885
Views
113
CrossRef citations to date
0
Altmetric
Focus on advanced nanoprocessing and applications in sensorics

Carbon nanotube based transparent conductive films: progress, challenges, and perspectives

&
Pages 493-516 | Received 31 Mar 2016, Accepted 15 Jul 2016, Published online: 02 Sep 2016

References

  • Nathan A, Ahnood A, Cole MT, et al. Flexible electronics: the next ubiquitous platform. Proc IEEE. 2012;100:1486–1517.10.1109/JPROC.2012.2190168
  • Kumar A, Zhou CW. The race to replace tin-doped indium oxide: which material will win? ACS Nano. 2010;4:11–14.10.1021/nn901903b
  • Singh M, Haverinen HM, Dhagat P, et al. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–685.10.1002/adma.v22:6
  • Ellmer K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photon. 2012;6:808–816.
  • Song JZ, Zeng HB. Transparent electrodes printed with nanocrystal inks for flexible smart dvices. Angew Chem Int Ed. 2015;54:9760–9774.10.1002/anie.201501233
  • Ginley DS, Bright C. Transparent conducting oxides. MRS Bulletin. 2000;25:15–18.10.1557/mrs2000.256
  • Minami T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Tech. 2005;20:S35–S44.10.1088/0268-1242/20/4/004
  • Minami T. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Film. 2008;516:5822–5828.10.1016/j.tsf.2007.10.063
  • Bühler G, Thölmann D, Feldmann C. One-pot synthesis of highly conductive indium tin oxide nanocrystals. Adv Mater. 2007;19:2224–2227.10.1002/(ISSN)1521-4095
  • Krebs FC, Gevorgyan SA, Alstrup J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem. 2009;19:5442–5451.10.1039/b823001c
  • Choulis SA, Choong VE, Mathai MK, et al. The effect of interfacial layer on the performance of organic light-emitting diodes. Appl Phys Lett. 2005;87:113503.10.1063/1.2042635
  • Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater. 2012;22:421–428.10.1002/adfm.201101775
  • Xia YJ, Sun K, Ouyang JY. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv Mater. 2012;24:2436–2440.10.1002/adma.201104795
  • Alemu D, Wei HY, Ho KC, et al. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci. 2012;5:9662–9671.10.1039/c2ee22595f
  • Vitoratos E, Sakkopoulos S, Dalas E, et al. Thermal degradation mechanisms of PEDOT:PSS. Org Electron. 2009;10:61–66.10.1016/j.orgel.2008.10.008
  • Wu H, Kong D, Ruan Z, et al. A transparent electrode based on a metal nanotrough network. Nat Nanotech. 2013;8:421–425.10.1038/nnano.2013.84
  • van de Groep JV, Spinelli P, Polman A. Transparent conducting silver nanowire networks. Nano Lett. 2012;12:3138–3144.10.1021/nl301045a
  • Ye SR, Rathmell AR, Chen ZF, et al. Metal nanowire networks: the next generation of transparent conductors. Adv Mater. 2014;26:6670–6687.10.1002/adma.v26.39
  • Song M, You DS, Lim K, et al. Efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv Funct Mater. 2013;23:4177–4184.10.1002/adfm.v23.34
  • Ye SR, Stewart IE, Chen Z F, et al. How copper nanowires grow and how to control their properties. Acc. Chem. Res. 2016;49:442–451. Available from: http://www.azonano.com/news.aspx?newsID=28414
  • Xu L, Yang Y, Hu ZW, et al. Comparison study on the stability of copper nanowires and their oxidation kinetics in gas and liquid. ACS Nano. 2016;10:3823–3834.10.1021/acsnano.6b00704
  • Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Lett. 2014;14:6298–6305.10.1021/nl502647k
  • Bae S, Kim H, Lee Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotech. 2010;5:574–578.10.1038/nnano.2010.132
  • De S, Coleman JN. Are there fundamental limitations on the sheet resistance and transmittance of thin graphene films? ACS Nano. 2010;4:2713–2720.10.1021/nn100343f
  • Kasry A, Kuroda MA, Martyna GJ, et al. Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes. ACS Nano. 2010;4:3839–3844.10.1021/nn100508g
  • Wang SJ, Geng Y, Zheng QB, et al. Fabrication of highly conducting and transparent graphene films. Carbon. 2010;48:1815–1823.10.1016/j.carbon.2010.01.027
  • Güneş F, Shin HJ, Biswas C. et al. Layer-by-layer doping of few-layer graphene film. ACS Nano. 2010;4:4595-4600.
  • Park H, Brown PR, Buloyic V, et al. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2012;12:133–140.10.1021/nl2029859
  • Jo G, Choe M, Lee S, et al. The application of graphene as electrodes in electrical and optical devices. Nanotech. 2012;23:112001.10.1088/0957-4484/23/11/112001
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706–710.10.1038/nature07719
  • Khrapach I, Withers F, Bointon TH, et al. Novel highly conductive and transparent graphene-based conductors. Adv Mater. 2012;24:2844–2849.10.1002/adma.v24.21
  • Jeong SY, Kim SH, Han JT, et al. High-performance transparent conductive films using rheologically derived reduced graphene oxide. ACS Nano. 2011;5:870–878.10.1021/nn102017f
  • Park KH, Kim BH, Song SH, et al. Exfoliation of non-oxidized graphene flakes for scalable conductive film. Nano Lett. 2012;12:2871–2876.10.1021/nl3004732
  • Pang S, Hernandez Y, Feng X, et al. Graphene as transparent electrode material for organic electronics. Adv Mater. 2011;23:2779–2795.10.1002/adma.201100304
  • Lee Y, Ahn JH. Graphene-based transparent conductive films. Nano. 2013;8:1330001.10.1142/S1793292013300016
  • Bu Q, Zhan YH, He FF, et al. Stretchable conductive films based on carbon nanomaterials prepared by spray coating. J Appl Polymer Sci. 2016;133:43243.
  • Hu L, Hecht DS, Gruner G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004;4:2513–2517.10.1021/nl048435y
  • Hecht DS, Hu L, Gruner G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater. 2011;23:1482–1513.10.1002/adma.201003188
  • Geng HZ, Kim KK, So KP, et al. Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. J Am Chem Soc. 2007;129:7758–7759.10.1021/ja0722224
  • Hu L, Hecht DS, Gruner G. Carbon nanotube thin films: fabrication, properties, and applications. Chem Rev. 2010;110:5790–5844.10.1021/cr9002962
  • Dan B, Irvin GC, Pasquali M. Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano. 2009;3:835–843.10.1021/nn8008307
  • Hou PX, Yu B, Su Y, et al. Double-wall carbon nanotube transparent conductive films with excellent performance. J Mater Chem A. 2014;2:1159–1164.10.1039/C3TA13685J
  • Parekh BB, Fanchini G, Eda G, et al. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl Phys Lett. 2007;90:121913.10.1063/1.2715027
  • Feng C, Liu K, Wu JS, et al. Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv Funct Mater. 2010;20:885–891.10.1002/adfm.200901960
  • Doherty EM, De S, Lyons PE, et al. The spatial uniformity and electromechanical stability of transparent, conductive films of single walled nanotubes. Carbon. 2009;47:2466–2473.10.1016/j.carbon.2009.04.040
  • Simien D, Fagan JA, Luo W, et al. Influence of nanotube length on the optical and conductivity properties of thin single-wall carbon nanotube networks. ACS Nano. 2008;2:1879–1884.10.1021/nn800376x
  • Yang SB, Kong BS, Jung DW, et al. Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale. 2011;3:1361–1373.10.1039/c0nr00855a
  • Du J, Pei S, Ma L, et al. Carbon nanotube- and graphene-based transparent conductive films for optoelectronic devices. Adv Mater. 2014;26:1958–1991.10.1002/adma.201304135
  • Ho XN, Wei J. Films of carbon nanomaterials for transparent conductors. Materials. 2013;6:2155–2181.10.3390/ma6062155
  • De Volder MFL, Tawfick SH, Baughman RH, et al. Carbon nanotubes: present and future commercial applications. Science. 2013;339:535–539.10.1126/science.1222453
  • Wu Z1, Chen Z, Du X, et al. Transparent, conductive carbon nanotube films. Science 2004;305:1273-1276. 10.1126/science.1101243
  • Saran N, Parikh K, Suh DS, et al. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. J Am Chem Soc. 2004;126:4462–4463.10.1021/ja037273p
  • Ma W, Song L, Yang R, et al. Directly synthesized strong, highly conducting, transparent single-walled carbon nanotube films. Nano Lett. 2007;7:2307–2311.10.1021/nl070915c
  • Nasibulin AG, Kaskela A, Mustonen K, et al. Multifunctional free-standing single-walled carbon nanotube films. ACS Nano. 2011;5:3214–3221.10.1021/nn200338r
  • Liu XL, Han S, Zhou CW. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 2006;6:34–39.10.1021/nl0518369
  • Gruner G. Carbon nanotube films for transparent and plastic electronics. J Mater Chem. 2006;16:3533–3539.10.1039/b603821m
  • Zhang M, Fang S, Zakhidov AA, et al. Strong, transparent, multifunctional, carbon nanotube sheets. Science. 2005;309:1215–1219.10.1126/science.1115311
  • Reynaud O, Nasibulin AG, Anisimov AS, et al. Aerosol feeding of catalyst precursor for CNT synthesis and highly conductive and transparent film fabrication. Chem Eng J. 2014;255:134–140.10.1016/j.cej.2014.06.082
  • Cole M, Hiralal P, Ying K, et al. Dry-transfer of aligned multiwalled carbon nanotubes for flexible transparent thin films. J Nanomater. 2012;2012:272960.
  • Chen J, Minett AI, Liu Y, et al. Direct growth of flexible carbon nanotube electrodes. Adv Mater. 2008;20:566–570.10.1002/(ISSN)1521-4095
  • Kaskela A, Nasibulin AG, Timmermans MY, et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 2010;10:4349–4355.10.1021/nl101680s
  • Available from http://www.canatu.com/canatu-launches-high-transmittance-cnb-transparent-conductive-film-for-touch-sensors/
  • Kato H, Nakamura A, Horie M. Behavior of surfactants in aqueous dispersions of single-walled carbon nanotubes. RSC Adv. 2014;4:2129–2136.10.1039/C3RA45181J
  • Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R. 2005;49:89–112.10.1016/j.mser.2005.04.002
  • Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci. 2006;128:37-46. 10.1016/j.cis.2006.11.007
  • Nish A, Hwang JY, Doig J, et al. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nat Nanotech. 2007;2:640–646.10.1038/nnano.2007.290
  • Ausman KD, Piner R, Lourie O, et al. Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B. 2000;104:8911–8915.10.1021/jp002555m
  • Rastogi R, Kaushal R, Tripathi SK, et al. Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci. 2008;328:421–428.10.1016/j.jcis.2008.09.015
  • Kim SW, Kim T, Kim YS, et al. Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon. 2012;50:3–33.10.1016/j.carbon.2011.08.011
  • Sun Z, Nicolosi V, Rickard D, et al. Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C. 2008;112:10692–10699.10.1021/jp8021634
  • Lee HW, Yoon Y, Park S, et al. Selective dispersion of high purity semiconducting single-walled carbon nanotubes with regioregular poly(3-alkylthiophene)s. Nat Commun. 2011;2:541.10.1038/ncomms1545
  • Huang YY, Terentjev EM. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymer. 2012;4:275–295.10.3390/polym4010275
  • Mistry KS, Larsen BA, Blackburn JL. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano. 2013;7:2231–2239.10.1021/nn305336x
  • Fagan JA, Bauer BJ, Hobbie EK, et al. Carbon nanotubes: measuring dispersion and length. Adv Mater. 2011;23:338–348.10.1002/adma.201001756
  • Kharissova OV, Kharisov BI, Ortiz EGD, et al. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 2013;3:24812–24852.10.1039/c3ra43852j
  • Koh B, Park JB, Hou XM, et al. Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. J Phys Chem B. 2011;115:2627–2633.10.1021/jp110376h
  • Barman SN, LeMieux MC, Baek J, et al. Effects of dispersion conditions of single-walled carbon nanotubes on the electrical characteristics of thin film network transistors. ACS Appl Mater Interfaces. 2010;2:2672–2678.10.1021/am1005223
  • Samanta SK, Fritsch M, Scherf U, et al. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Acc Chem Res. 2014;47:2446–2456.10.1021/ar500141j
  • Rosner B, Guldi DM, Chen J, et al. Dispersion and characterization of arc discharge single-walled carbon nanotubes – towards conducting transparent films. Nanoscale. 2014;6:3695–3703.10.1039/c3nr05788g
  • Yang SB, Kong BS, Kim DW, et al. Functionalizing single-walled carbon nanotube networks: effect on electrical and electrochemical properties. J Phys Chem C. 2010;114:9296–9300.10.1021/jp102066k
  • Li Z, Kandel HR, Dervishi E, et al. Does the wall number of carbon nanotubes matter as conductive transparent material? Appl Phys Lett. 2007;91:053115.10.1063/1.2767215
  • Zhang D, Ryu K, Liu X, et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 2006;6:1880–1886.10.1021/nl0608543
  • Jo JW, Jung JW, Lee JU, et al. Fabrication of highly conductive and transparent thin films from single-walled carbon nanotubes using a new non-ionic surfactant via spin coating. ACS Nano. 2010;4:5382–5388.10.1021/nn1009837
  • Liu WB, Pei S, Du J, et al. Additive-free dispersion of single-walled carbon nanotubes and its application for transparent conductivefilms. Adv Funct Mater. 2011;21:2330–2337.10.1002/adfm.v21.12
  • Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem Rev. 2010;110:5366–5397.10.1021/cr100018g
  • Maiti UN, Lee WJ, Lee JW, et al. Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv Mater. 2014;26:40–67.10.1002/adma.201303265
  • Bekyarova E, Sarkar S, Wang F, et al. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene. Acc Chem Res. 2013;46:65–76.10.1021/ar300177q
  • Peng X, Wong SS. Functional covalent chemistry of carbon nanotube surfaces. Adv Mater. 2009;21:625–642.10.1002/adma.v21:6
  • Cola BA, Xu J, Cheng CR, et al. Photoacoustic characterization of carbon nanotube array thermal interfaces. J Appl Phys. 2007;101:054313.10.1063/1.2510998
  • Santini CA, Volodin A, Van Haesendonck C, et al. Carbon nanotube-carbon nanotube contacts as an alternative towards low resistance horizontal interconnects. Carbon. 2011;49:4004–4012.10.1016/j.carbon.2011.05.041
  • Topinka MA, Rowell MW, Goldhaber-Gordon D, et al. Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett. 2009;9:1866–1871.10.1021/nl803849e
  • Lee RS, Kim HJ, Fischer JE, et al. Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br. Nature. 1997;388:255-257.
  • Nirmalraj PN, Lyons PE, De S, et al. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009;9:3890–3895.10.1021/nl9020914
  • Kim Y, Chikamatsu M, Azumi R, et al. Industrially feasible approach to transparent, flexible, and conductive carbon nanotube films: cellulose-assisted film deposition followed by solution and photonic processing. Appl Phys Express. 2013;6:025101.10.7567/APEX.6.025101
  • Wang Y, Di C, Liu Y, et al. Optimizing single-walled carbon nanotube films for applications in electroluminescent devices. Adv Mater. 2008;20:4442–4449.10.1002/adma.v20:23
  • Kim KK, Bae JJ, Park HK, et al. Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping. J Am Chem Soc. 2008;130:12757–12761.10.1021/ja8038689
  • Hellstrom SL, Vosgueritchian M, Stoltenberg RM, et al. Strong and stable doping of carbon nanotubes and graphene by MoOx for transparent electrodes. Nano Lett. 2012;12:3574–3580.10.1021/nl301207e
  • Mistry KS, Larsen BA, Bergeson JD, et al. n-Type transparent conducting films of small molecule and polymer amine doped single-walled carbon nanotubes. ACS Nano. 2011;5:3714–3723.10.1021/nn200076r
  • Blackburn JL, Barnes TM, Beard MC, et al. Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano. 2008;2:1266–1274.10.1021/nn800200d
  • Rinzler AG, Donoghue EP. All the dope on nanotube films. ACS Nano. 2011;5:3425–3427.10.1021/nn201534x
  • Shim D, Jung SH, Han SY, et al. Improvement of SWCNT transparent conductive films via transition metal doping. Chem Commun. 2011;47:5202–5204.10.1039/c1cc10190k
  • Hecht DS, Heintz AM, Lee R, et al. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology. 2011;22:169501.10.1088/0957-4484/22/16/169501
  • Mirri F, Ma AWK, Hsu TT, et al. High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano. 2012;6:9737–9744.10.1021/nn303201g
  • Zhou Y, Shimada S, Saito T, et al. Building interconnects in carbon nanotube networks with metal halides for transparent electrodes. Carbon. 2015;87:61–69.10.1016/j.carbon.2015.01.031
  • Lee J, Woo JY, Kim JT, et al. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Appl Mater Interfaces. 2014;6:10974–10980.10.1021/am502639n
  • Peng LW, Feng Y, Lv P, et al. Transparent, conductive, and flexible multiwalled carbon nanotube/graphene hybrid electrodes with two three-dimensional microstructures. J Phys Chem C. 2012;116:4970–4978.10.1021/jp209180j
  • Xin GQ, Hwang W, Kim N, et al. A graphene sheet exfoliated with microwave irradiation and interlinked by carbon nanotubes for high-performance transparent flexible electrodes. Nanotechnology. 2010;21:405201.10.1088/0957-4484/21/40/405201
  • Liu YP, Jung E, Wang Y, et al. Quasi- freestanding” graphene- on- single walled carbon nanotube electrode for applications in organic light- emitting diode. Small. 2014;10:944–949.10.1002/smll.201301829
  • Stapleton AJ, Afre RA, Ellis AV, et al. Highly conductive interwoven carbon nanotube and silver nanowire transparent electrodes. Sci Technol Adv Mater. 2013;14:035004.10.1088/1468-6996/14/3/035004
  • Stapleton AJ, Yambem SD, Johns AH, et al. Planar silver nanowire, carbon nanotube and PEDOT:PSS nanocomposite transparent electrodes. Sci Technol Adv Mater. 2015;16:025002.10.1088/1468-6996/16/2/025002
  • Woo JY, Kim KK, Lee J, et al. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors. Nanotechnology. 2014;25:285203.10.1088/0957-4484/25/28/285203
  • Han HJ, Choi YC, Han JH. Preparation of transparent conducting films with improved haze characteristics using single-wall carbon nanotube-silver nanowire hybrid material. Synt Met. 2015;199:219–222.10.1016/j.synthmet.2014.11.014
  • Woo JS, Han JT, Jung S, et al. Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Sci Rep. 2014;4:4804.
  • Jing M, Han C, Li M, et al. High performance of carbon nanotubes/silver nanowires-PET hybrid flexible transparent conductive films via facile pressing-transfer technique. Nanoscale Res Lett. 2014;9:588.10.1186/1556-276X-9-588
  • Kim D, Zhu L, Jeong DJ, et al. Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon. 2013;63:530–536.10.1016/j.carbon.2013.07.030
  • Thostenson E, Li C, Chou T. Nanocomposites in context. Composites Sci Tech. 2005;65:491–516.10.1016/j.compscitech.2004.11.003
  • Jackson R, Domercq B, Jain R, et al. Stability of doped transparent carbon nanotube electrodes. Adv Funct Mater. 2008;18:2548–2554.10.1002/adfm.v18:17
  • Zhou Y, Shimada S, Saito T, et al. Understanding the doping effects on the structural and electrical properties of ultrathin carbon nanotube networks. J Appl Phys. 2015;118:215305.10.1063/1.4937137
  • Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method. Adv Mater. 2012;24:2459–2462.10.1002/adma.201104771
  • Zhou Y, Taima T, Miyadera T, et al. Glancing angle deposition of copper iodide nanocrystals for efficient organic photovoltaics. Nano Lett. 2012;12:4146–4152.10.1021/nl301709x
  • Zhou Y, Taima T, Miyadera T, et al. Phase separation of co-evaporated ZnPc:C60 blend film for highly efficient organic photovoltaics. Appl Phys Lett. 2012;100:233302.10.1063/1.4726118
  • Walker G. A review of technologies for sensing contact location on the surface of a display. J Soc Inf Disp. 2012;20:413–440.10.1002/jsid.100
  • Chang-Jian SK, Ho JR. John Cheng, JW. Fabrication of transparent double-walled carbon nanotubes flexible matrix touch panel by laser ablation technique. J W Opt Laser Technol. 2011;43:1371–1376.10.1016/j.optlastec.2011.03.027
  • Park C, Kim SW, Lee YS, et al. Spray coating of carbon nanotube on polyethylene terephthalate film for touch panel application. J Nanosci Nanotechnol. 2012;12:5351–5355.10.1166/jnn.2012.6343
  • Kim BJ, Han SH, Park JS. Sheet resistance, transmittance, and chromatic property of CNTs coated with PEDOT:PSS films for transparent electrodes of touch screen panels. Thin Solid Film. 2014;572:68–72.10.1016/j.tsf.2014.08.015
  • Kim W, Oh H, Kwak Y, et al. Development of a carbon nanotube-based touchscreen capable of multi-touch and multi-force sensing. Sensor. 2015;15:28732–28741.10.3390/s151128732
  • Lee P, Ham J, Lee J, et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater. 2014;24:5671–5678.10.1002/adfm.v24.36
  • Lee W, Koo H, Sun J, et al. A fully roll-to-roll gravure-printed carbon nanotube-based active matrix for multi-touch sensors. Sci Rep. 2015;5:17707.10.1038/srep17707
  • Bai S, Sun C, Yan H, et al. Healable, transparent, room-temperature electronic sensors based on carbon nanotube network-coated polyelectrolyte multilayers. Small. 2015;11:5807–5813.10.1002/smll.201502169
  • Zhang X, Hu S, Wang M, et al. Continuous graphene and carbon nanotube based high flexible and transparent pressure sensor arrays. Nanotechnology. 2015;26:115501.10.1088/0957-4484/26/11/115501
  • Cai L, Song L, Luan P, et al. Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep. 2013;3:3402.
  • Lee KH, Scardaci V, Kim HY, et al. Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. Actuat B Chem. 2013;188:571–575.10.1016/j.snb.2013.07.048
  • Lee S, Reuveny A, Reeder J, et al. A transparent bending-insensitive pressure sensor. 2016;11:472–478.
  • Wang XL, Li TJ, Adam J, et al. Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. J Mater Chem A. 2013;1:3580–3586.10.1039/c3ta00079f
  • Nossol E, Zarbin AJG. Transparent films from carbon nanotubes/Prussian blue nanocomposites: preparation, characterization, and application as electrochemical sensors. J Mater Chem. 2012;22:1824–1833.10.1039/C1JM14225A
  • Choi E, Kim J, Chun S, et al. Fabrication of a flexible and transparent touch sensor using single-walled carbon nanotube thin-films. J Nanosci Nanotechnol. 2011;11:5845–5849.10.1166/jnn.2011.4450
  • Lipomi DJ, Vosgueritchian M, Tee BCK, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol. 2011;6:788–792.10.1038/nnano.2011.184
  • Kuila BK, Stamm M. Transparent, versatile chemical vapor sensor using supramolecular assembly of block copolymer and carbon nanotubes. Macromol Rapid Commun. 2010;31:1881–1885.10.1002/marc.v31:21
  • Cohen DJ, Mitra D, Peterson K, et al. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012;12:1821–1825.10.1021/nl204052z
  • Liu K, Sun YH, Liu P, et al. Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv Funct Mater. 2011;21:2721–2728.10.1002/adfm.201100306
  • Muth JT, Vogt DM, Truby RL, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater. 2012;26:6307–6312.
  • Saha A, Jiang C, Marti AA. Carbon nanotube networks on different platforms. Carbon. 2014;79:1–18.10.1016/j.carbon.2014.07.060
  • Kim BS, Lee SW, Yoon H, et al. Pattern transfer printing of multiwalled carbon nanotube multilayers and application in biosensors. Chem Mater. 2010;22:4791–4797.10.1021/cm101401t
  • Roh E, Hwang BU, Kim D, et al. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano. 2015;9:6252–6261.10.1021/acsnano.5b01613
  • Tenent RC, Barnes TM, Bergeson JD, et al. Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater. 2009;21:3210–3216.10.1002/adma.v21:31
  • Kim S, Yim J, Wang X, et al. Spin- and spray-deposited single-walled carbon-nanotube electrodes for organic solar cells. Adv Funct Mater. 2010;20:2310–2316.10.1002/adfm.v20:14
  • Barnes TM, Bergeson JD, Tenent RC, et al. Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer. Appl Phys Lett. 2010;96:243309.10.1063/1.3453445
  • Tyler TP, Brock RE, Karmel HJ, et al. Electronically monodisperse single-walled carbon nanotube thin films as transparent conducting anodes in organic photovoltaic devices. Adv Energy Mater. 2011;1:785–791.10.1002/aenm.v1.5
  • Salvatierra RV, Cava CE, Roman LS, et al. ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater. 2013;23:1490–1499.10.1002/adfm.v23.12
  • Rowell MW, Topinka MA, McGehee MD, et al. Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett. 2006;88:233506.10.1063/1.2209887
  • Hu X, Chen L, Zhang Y, et al. Large-scale roll-to-roll fabrication of ordered mesoporous materials using resol-assisted cooperative assembly. Chem Mater. 2014;26:6293–6302.10.1021/cm5033942
  • Jeon I, Cui K, Chiba T, et al. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J Am Chem Soc. 2015;137:7982–7985.10.1021/jacs.5b03739
  • Zhou Y, Wang Z, Saito T, et al. Fabrication of carbon nanotube hybrid films as transparent electrodes for small-molecule photovoltaic cell. RSC Adv. 2016;6:25062–25069.10.1039/C6RA01674J
  • Cataldo S, Salice P, Menna E, et al. Carbon nanotubes and organic solar cells. Energy Environ Sci. 2012;5:5919–5940.10.1039/C1EE02276H
  • Su CY, Lu AY, Chen YL, et al. Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells. J Mater Chem. 2010;20:7034–7042.10.1039/c0jm00578a
  • Cho DY, Eun K, Choa SH, et al. Highly flexible and stretchable carbon nanotube network electrodes prepared by simple brush painting for cost-effective flexible organic solar cells. Carbon. 2014;66:530–538.10.1016/j.carbon.2013.09.035
  • Kim S, Wang X, Yim JH, et al. Efficient organic solar cells based on spray-patterned single wall carbon nanotube electrodes. J Photon Energy. 2012;2:021010.10.1117/1.JPE.2.021010
  • Keru G, Ndungu PG, Nyamori VO. A review on carbon nanotube/polymer composites for organic solar cells. Int J Energy Res. 2014;38:1635–1653.10.1002/er.v38.13
  • Lipomi D, Bao Z. Stretchable, elastic materials and devices for solar energy conversion. Energy Environ Sci. 2011;4:3314–3328.10.1039/c1ee01881g
  • Angmo D, Krebs FC. Flexible ITO-free polymer solar cells. J Appl Polymer Sci. 2013;129:1–14.10.1002/app.v129.1
  • Su DS, Centi G. A perspective on carbon materials for future energy application. J Energy Chem. 2013;22:151–173.10.1016/S2095-4956(13)60022-4
  • van de Lagemaat J, Barnes TM, Rumbles G, et al. Organic solar cells with carbon nanotubes replacing In2O3: Sn as the transparent electrode. Appl Phys Lett. 2006;88:233503.10.1063/1.2210081
  • Son SY, Yun JM, Noh YJ, et al. Highly flexible and bendable carbon nanosheets as transparent conducting electrodes for organic solar cells. Carbon. 2015;81:546–551.10.1016/j.carbon.2014.09.089
  • Feng YY, Ju X, Feng W, et al. Organic solar cells using few-walled carbon nanotubes electrode controlled by the balance between sheet resistance and the transparency. Appl Phys Lett. 2009;94:123302.10.1063/1.3103557
  • Jin SH, Jun GH, Hong SH, et al. Conformal coating of titanium suboxide on carbon nanotube networks by atomic layer deposition for inverted organic photovoltaic cells. Carbon. 2012;50:4483–4488.10.1016/j.carbon.2012.05.027
  • Zhou Y, Taima T, Kuwabara T, et al. Efficient small-molecule photovoltaic cells using a crystalline diindenoperylene film as a nanostructured template. Adv Mater. 2013;25:6069–6075.10.1002/adma.201302167
  • Jeon I, Chiba T, Delacou C, et al. Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 2015;15:6665–6671.10.1021/acs.nanolett.5b02490
  • Li Z, Kulkarni SA, Boix PP, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano. 2014;8:6797–6804.10.1021/nn501096h
  • Sachse C, Weiss N, Gaponik N, et al. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based Transparent Electrodes. Adv Energy Mater. 2014;4:1300737.10.1002/aenm.201300737
  • Kim Y, Ryu TI, Ok KH, et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv Funct Mater. 2015;25:4580–4589.10.1002/adfm.201501046
  • Chen KS, Yip HL, Salinas JF, et al. Strong photocurrent enhancements in highly efficient flexible organic solar cells by adopting a microcavity configuration. Adv Mater. 2014;26:3349–3354.10.1002/adma.v26.20
  • Kang H, Jung S, Jeong S, et al. Polymer-metal hybrid transparent electrodes for flexible electronics. Nat Commun. 2015, 6 6503.10.1038/ncomms7503
  • Li Y, Meng L, Yang YM, et al. High-efficiency robust perovskite solar cells on ultrathin flexible substrates. Nat Commun. 2016;7:10214.10.1038/ncomms10214
  • Li J, Hu L, Wang L, et al. Organic light-emitting diodes having carbon nanotube anodes. Nano Lett. 2006;6:2472–2477.10.1021/nl061616a
  • Aguirre CM, Auvray S, Pigeon S, et al. Carbon nanotube sheets as electrodes in organic light-emitting diodes. Appl Phys Lett. 2006;88:183104.10.1063/1.2199461
  • Bansal M, Srivastava R, Lal C, et al. Carbon nanotube-based organic light emitting diodes. Nanoscale. 2009;1:317–330.10.1039/b9nr00179d
  • Hu LB, Li JF, Liu J, et al. Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology. 2010;21:155202.10.1088/0957-4484/21/15/155202
  • Liu D, Fina M, Guo J, et al. Organic light-emitting diodes with carbon nanotube cathode-organic interface layer. Appl Phys Lett. 2009;94:013110.10.1063/1.3049605
  • Gao J, Mu X, Li XY, et al. Modification of carbon nanotube transparent conducting films for electrodes in organic light-emitting diodes. Nanotechnology. 2013;24:435201.10.1088/0957-4484/24/43/435201
  • Yu Z, Hu L, Liu Z, et al. Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Appl Phys Lett. 2009;95:203304.10.1063/1.3266869
  • Xu F, Zhu WQ, Yan L, et al. Single walled carbon nanotube anodes based high performance organic light-emitting diodes with enhanced contrast ratio. Org Electron. 2012;13:302–308.10.1016/j.orgel.2011.11.015
  • Kim M, Kim YC. Single wall carbon nanotube/poly (3, 4-ethylenedioxythiophene) nanocomposite film as a transparent electrode for flexible organic light-emitting diodes. Synt Met. 2014;198:31–35.10.1016/j.synthmet.2014.09.033
  • Zhang B, Li F, Lin Z, et al. Flexible white organic light-emitting diodes based on single-walled carbon nanotube:poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent conducting film. Jpn. J Appl Phys. 2012;51:070204.10.7567/JJAP.51.070204
  • Sam FLM, Dabera GDMR, Lai KT, et al. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes. Nanotechnology. 2014;25:345202.10.1088/0957-4484/25/34/345202
  • Freitag P, Zakhidov AA, Luessem B, et al. Lambertian white top-emitting organic light emitting device with carbon nanotube cathode. J Appl Phys. 2012;112:114505.10.1063/1.4767439
  • Martínez-Sarti L, Pertegás A, Monrabal-Capilla M, et al. Flexible light-emitting electrochemical cells with single-walled carbon nanotube anodes. Org Electron. 2016;30:36–39.10.1016/j.orgel.2015.12.011
  • Inigo AR, Underwood JM, Silva SRP. Carbon nanotube modified electrodes for enhanced brightness in organic light emitting devices. Carbon. 2011;49:4211–4217.10.1016/j.carbon.2011.05.053
  • Williams CD, Robles RO, Zhang M, et al. Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Appl Phys Lett. 2008;93:183506.10.1063/1.3006436
  • Chhowalla M. Transparent and conducting SWNT thin films for flexible electronics. J Soc Inf Disp. 2007;15:1085–1088.
  • Qu ECW, Hu L, Raymond GCR, et al. Surface-modified nanotube anodes for high performance organic light-emitting diode. ACS Nano. 2009;3:2258–2264.
  • Yu Z, Liu Z, Wang M, et al. Highly flexible polymer light-emitting devices using carbon nanotubes as both anodes and cathodes. J Photon Energy. 2011;1:011003.10.1117/1.3528271
  • Han TH, Jeong SH, Lee Y, et al. Flexible transparent electrodes for organic light-emitting diodes. J Inf Disp. 2015;16:71–84.10.1080/15980316.2015.1016127
  • Xu J, Smith GM, Dun C, et al. Layered, nanonetwork composite cathodes for flexible, high-efficiency, organic light emitting devices. Adv Funct Mater. 2015;25:4397–4404.10.1002/adfm.v25.28
  • Zhong C, Duan C, Huang F, et al. Materials and devices toward fully solution processable organic light-emitting diodes. Chem Mater. 2011;23:326–340.10.1021/cm101937p
  • Wang GF, Tao XM, Chen W, et al. Improvement in performance of organic light-emitting devices by inclusion of multi-wall carbon nanotubes. J Lumin. 2007;126:602–606.10.1016/j.jlumin.2006.10.006
  • Zhang J, Wang C, Zhou C. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano. 2012;6:7412–7419.10.1021/nn3026172
  • Xu W, Zhao J, Qian L, et al. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED). Nanoscale 2014;6:1589–1595.10.1039/C3NR04870E
  • Mills CA, Sam FLM, Alshammari AS, et al. Storage lifetime of polymer-carbon nanotube inks for use as charge transport layers in organic light emitting diodes. J Disp Technol. 2014;10:125–131.10.1109/JDT.2013.2286840
  • Shi S, Silva SRP. High luminance organic light-emitting diodes with efficient multi-walled carbon nanotube hole injectors. Carbon. 2012;50:4163–4170.10.1016/j.carbon.2012.04.065
  • Chun JY, Han JW, Kim TW, et al. Enhancement of organic light-emitting diodes efficiency using carbon nanotube doped hole-injection layer on the Al-doped ZnO anode. ECS Solid State Lett. 2012;1:R13–R15.10.1149/2.004203ssl
  • Zhang J, Fu Y, Wang C, et al. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011;11:4852–4858.10.1021/nl202695v
  • Gao L, Zhao S, Xu Z, et al. Effects of the introduced single-wall carbon nanotubes on the performance of blue phosphorescence organic light-emitting diodes. J Nanosci Nanotech. 2011;11:9661–9664.10.1166/jnn.2011.5207
  • Shao M, Garrett MP, Xu XJ, et al. Effects of single walled carbon nanotubes on the electroluminescent performance of organic light-emitting diodes. Org Electron. 2011;12:1098–1102.10.1016/j.orgel.2011.03.003
  • McCarthy MA, Liu B, Donoghue EP, et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science. 2011;332:570–573.10.1126/science.1203052
  • Wang C, Zhang JL, Ryu KM, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009;9:4285–4291.10.1021/nl902522f
  • Sekitani T, Nakajima H, Maeda H, et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat Mater. 2009;8:494–499.10.1038/nmat2459
  • Hatton RA, Blanchard NP, Tan LW, et al. Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron. 2009;10:388–395.10.1016/j.orgel.2008.12.013
  • Li J, Hu L, Liu J, et al. Indium tin oxide modified transparent nanotube thin films as effective anodes for flexible organic light-emitting diodes. Appl Phys Lett. 2008;93:083306.10.1063/1.2970049
  • Hatton RA, Miller AJ, Silva SRP. Carbon nanotubes: a multi-functional material for organic optoelectronics. J Mater Chem. 2008;18:1183–1192.10.1039/b713527k
  • Zou J, Zhang K, Li J, et al. Carbon nanotube driver circuit for 6×6 organic light emitting diode display. Sci Rep. 2015;5:11755.10.1038/srep11755
  • Overview report of Transparent Conductive Films (TCF) 2016-2026: Forecasts, Markets, Technologies. Available from: http://www.idtechex.com/research/reports/transparent-conductive-films-tcf-2015-2025-forecasts-markets-technologies-000437.asp
  • Yoon H, Yamashita M, Ata S, et al. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Sci Rep. 2014;4:3907.
  • Photo is available from: https://commons.wikimedia.org/wiki/File:Samsung_Galaxy_S6_edge%2B.jpg
  • Photo is available from: http://infinitypv.com/infinitypro/opv/foil