1,959
Views
40
CrossRef citations to date
0
Altmetric
New topics/Others

Studying the electronic and phononic structure of penta-graphane

, &
Pages 610-617 | Received 19 Jan 2016, Accepted 31 Jul 2016, Published online: 07 Oct 2016

References

  • Pierson, HO. Handbook of carbon, graphite, diamond and fullerenes: processing, properties and applications. Norwich: William Andrew; 2012.
  • Yihong W, Zexiang SH, Ting Y. Two-Dimensional carbon: fundamental properties characterization and applications. Boca Raton: CRC Press; 2014.
  • Ebbesen TW. Carbon nanotubes: preparation and properties. Boca Raton: CRC Press; 1996.
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669. 10.1126/science.1102896
  • Katsnelson MI. Graphene: carbon in two dimensions. New York: Cambridge University Press; 2012. 10.1017/CBO9781139031080
  • Wolf EL. Applications of graphene: an overview. Heidelberg: Springer International Publishing; 2014. 10.1007/978-3-319-03946-6
  • Sadasivuni KK, Ponnamma D, Kim J, Thomas S. Graphene-Based polymer nanocomposites in electronics. Cham: Springer; 2015. 10.1007/978-3-319-13875-6
  • Craciun MF, Russo S, Yamamoto M, et al. Tuneable electronic properties in graphene. Nano Today. 2011;6(1):42–60. 10.1016/j.nantod.2010.12.001
  • Hesto P, Lourtioz JM. Research in nanoscience and nanotechnology: the French research system, nanosciences and nanotechnology. Cham: Springer International Publishing; 2016.
  • Karaush NN, Baryshnikov GV, Minaev BF. DFT characterization of a new possible graphene allotrope. Chem Phys Lett. 2014;612:229–233. 10.1016/j.cplett.2014.08.025
  • Wang Z, Zhou XF, Zhang X, et al. Phagraphene: a low-energy graphene allotrope composed of 5–6–7 carbon rings with distorted dirac cones. Nano Lett. 2015;15(9):6182–6186. 10.1021/acs.nanolett.5b02512
  • Xia K, Zhan H, Gu Y. Two-dimensional graphene heterojunctions: the tunable mechanical properties. Carbon. 2015;95:1061–1068. 10.1016/j.carbon.2015.09.022
  • Sevinçli H, Sevik C. Electronic, phononic, and thermoelectric properties of graphyne sheets. Appl Phys Lett. 2014;105(22):223108. 10.1063/1.4902920
  • Zhao Z, Tian F, Dong X, et al. Tetragonal allotrope of group 14 elements. J Am Chem Soc. 2012;134(30):12362–12365. 10.1021/ja304380p
  • Zhang S, Zhou J, Wang Q, et al. Penta-graphene: a new carbon allotrope. Proc Natl Acad Sci. 2015;112(8):2372–2377. 10.1073/pnas.1416591112
  • Einollahzadeh H, Dariani RS, Fazeli SM. Computing the band structure and energy gap of penta-graphene by using DFT and G0W0 approximations. Solid State Commun. 2016;229:1–4. 10.1016/j.ssc.2015.12.012
  • Ewels CP, Rocquefelte X, Kroto HW, et al. Predicting experimentally stable allotropes: instability of penta-graphene. Proc Natl Acad Sci. 2015;112(51):15609–15612.
  • Sofo JO, Chaudhari AS, Barber GD. Graphane: a two-dimensional hydrocarbon. Phys Rev B. 2007;75(15):153401. 10.1103/PhysRevB.75.153401
  • Zhou C, Chen S, Lou J, et al. Graphene’s cousin: the present and future of graphane. Nanoscale Res Lett. 2014;9(1): 1–9. 10.1186/1556-276X-9-26
  • Gonze X, Amadon B, Anglade PM, et al. ABINIT: first-principles approach to material and nanosystem properties. Comput Phys Commun. 2009;180(12):2582–2615. 10.1016/j.cpc.2009.07.007
  • Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B. 1976;13(12):5188–5192. 10.1103/PhysRevB.13.5188
  • Engel E, Dreizler RM. Density functional theory: an advanced course. Heidelberg: Springer Science and Business Media; 2011. 10.1007/978-3-642-14090-7
  • Fiolhais C, Noguerra F, Marques MA. A primer in density functional theory. Springer Science & Business Media; 2003. p. 620.
  • Aulbur WG, Jönsson L, Wilkins JW. Quasiparticle calculations in solids. Solid State Phys. 2000; 54:1–218. 10.1016/S0081-1947(08)60248-9
  • Bruneval F, Gatti M. Quasiparticle self-consistent GW method for the spectral properties of complex materials. Top Curr Chem. 2014;347:99–135. 10.1007/978-3-642-55068-3
  • Kohanoff J. Electronic structure calculations for solids and molecules: theory and computational methods. New York: Cambridge University Press; 2006. 10.1017/CBO9780511755613
  • Gonze X, Lee C. Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B. 1997;55(16):10355–10358.
  • Ballard DGH, Courtis A, Shirley IM, et al. Synthesis of polyphenylene from a cis-dihydrocatechol biologically produced monomer. Macromolecules. 1988;21(2):294–304. 10.1021/ma00180a003
  • Yi D, Yang L, Xie S, et al. Stability of hydrogenated graphene: a first-principles study. RSC Adv. 2015;5(26):20617–20622. 10.1039/C5RA00004A
  • Wen XD, Hand L, Labet V, et al. Graphane sheets and crystals under pressure. Proc Natl Acad Sci. 2011;108(17):6833–6837. 10.1073/pnas.1103145108
  • Hammer B, Hansen LB, Nørskov JK. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys Rev B. 1999;59(11):7413. 10.1103/PhysRevB.59.7413
  • Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge University Press; 2004. 10.1017/CBO9780511805769
  • Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B. 1991;43(3):1993–2006. 10.1103/PhysRevB.43.1993
  • Savini G, Ferrari AC, Giustino F. First-principles prediction of Doped Graphane as a high-temperature electron-phonon superconductor. Phys Rev Lett. 2010;105(3):037002. 10.1103/PhysRevLett.105.037002
  • Tobin JR. Superconductivity research developments. New York: Nova Publishers; 2008.
  • Durajski AP. Influence of hole doping on the superconducting state in graphane. Supercond Sci Technol. 2015;28(3):035002. 10.1088/0953-2048/28/3/035002
  • Chanier T, Gali A. Ab initio characterization of a Ni-related defect in diamond: the W8 center. Phys Rev B. 2013;87(24):24502.
  • Topsakal M, Cahangirov S, Ciraci S. The response of mechanical and electronic properties of graphane to the elastic strain. Appl Phys Lett. 2010;96(9):091912. 10.1063/1.3353968
  • Peelaers H, Hernández-Nieves AD, Leenaerts O, Partoens B.. Vibrational properties of graphene fluoride and graphane. Appl Phys Lett. 2011;98(5):051914. 10.1063/1.3551712