5,154
Views
46
CrossRef citations to date
0
Altmetric
New topics/Others

Recent progress in the structure control of Pd–Ru bimetallic nanomaterials

, &
Pages 583-596 | Received 17 Apr 2016, Accepted 04 Aug 2016, Published online: 19 Sep 2016

References

  • Blaser HU, Indolese A, Schnyder A, et al. Supported palladium catalysts for fine chemicals synthesis. J Mol Catal A-Chem. 2001;173:3–18.10.1016/S1381-1169(01)00143-1
  • Baeckvall JE. Palladium in some selective oxidation reactions. Acc Chem Res. 1983;16:335–342.10.1021/ar00093a004
  • Bianchini C, Shen PK. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev. 2009;109:4183–4206.10.1021/cr9000995
  • Cao M, Wu D, Su W, et al. Palladium nanocrystals stabilized by cucurbit [6] uril as efficient heterogeneous catalyst for direct C-H functionalization of polyfluoroarenes. J Catal. 2015;321:62–69.10.1016/j.jcat.2014.10.013
  • Kobayashi H, Yamauchi M, Kitagawa H, et al. On the nature of strong hydrogen atom trapping inside Pd nanoparticles. J Am Chem Soc. 2008;130:1828–1829.10.1021/ja7102372
  • Song Z, Cai T, Hanson JC, et al. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. J Am Chem Soc. 2004;126:8576–8584.10.1021/ja031718s
  • Shi F, Tse MK, Zhou S, et al. Green and efficient synthesis of sulfonamides catalyzed by nano-Ru/Fe(3)O(4). J Am Chem Soc. 2009;131:1775–1779.10.1021/ja807681v
  • Zahmakiran M, Tonbul Y, Ozkar S. Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. J Am Chem Soc. 2010;132:6541–6549.10.1021/ja101602d
  • Danilovic N, Subbaraman R, Chang KC, et al. Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed. 2014;53:14016–14021.10.1002/anie.v53.51
  • Wolf SA, Awschalom DD, Buhrman RA, et al. Spintronics: a spin-based electronics vision for the future. Science. 2001;294:1488–1495.10.1126/science.1065389
  • Joo SH, Park JY, Renzas JR, et al. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett. 2010;10:2709–2713.10.1021/nl101700j
  • Jin M, Liu H, Zhang H, et al. Synthesis of Pd nanocrystals enclosed by 100 facets and with sizes< 10 nm for application in CO oxidation. Nano Res. 2011;4:83–91.10.1007/s12274-010-0051-3
  • Colin J G E; Engelhard Industries, Inc., Hydrogen diffusion process. United States patent US 3, 238, 700. 1966 Mar 8.
  • Schober T, Wenzl H, Alefeld G, et al. Hydrogen in metals II. Top Appl Phys. 1978;29:11.10.1007/3-540-08883-0
  • C. D. Gelatt J. Transition-metal hydrides: Electronic structure and the heats of formation. Phys Rev B. 1978; 17: 19.
  • Papaconstantopoulos DA, Klein BM, Economou EN, et al. Band-structure and superconductivity of PdDx and PdHx. Phys Rev B. 1978;17:141–150.10.1103/PhysRevB.17.141
  • Zuchner H, Rauf T. Electrochemical isotherm measurements on the Pd-H and Pdag-H systems. J Less-Common Met. 1991;172:816–823.10.1016/0022-5088(91)90208-L
  • Noh HWL, Flanagan TB. The effect of annealing pretreatment of Pd-Rh alloys on their hydrogen solubilies and thermodynamic parameters for H2 solution. J Alloys Compd. 1993;196:10.
  • Barlag H, Opara L, Zuchner H. Hydrogen diffusion in palladium based f.c.c. alloys. J Alloys Compd. 2002;330:434–437.10.1016/S0925-8388(01)01459-1
  • Ke XZ, Kramer GJ, Lovvik OM. The influence of electronic structure on hydrogen absorption in palladium alloys. J Phys-Condens Mat. 2004;16:6267–6277.10.1088/0953-8984/16/34/024
  • Cabrera A, Hasen J, Schuller IK. Structural changes induced by hydrogen absorption in palladium and palladium–ruthenium alloys. Appl Phys Lett. 1995;66:1216–1218.10.1063/1.113241
  • Gade SK, Keeling MK, Davidson AP, et al. Palladium–ruthenium membranes for hydrogen separation fabricated by electroless co-deposition. Int J Hydrogen Energy. 2009;34:6484–6491.10.1016/j.ijhydene.2009.06.037
  • Cabrera A, Morales E, Armor J. Kinetics of hydrogen desorption from palladium and ruthenium-palladium foils. J Mater Res. 1995;10:779–785.10.1557/JMR.1995.0779
  • Ferrari P, Diaz-Droguett D, Rojas S, et al. Inhibition of hydrogen absorption in bulk Pd by the formation of Ru–Pd surface alloy. Thin Solid Films. 2014;550:732–737.10.1016/j.tsf.2013.10.181
  • Hubkowska K, Koss U, Łukaszewski M, et al. Hydrogen electrosorption into Pd-rich Pd–Ru alloys. J. Electroanal Chem. 2013;704:10–18.10.1016/j.jelechem.2013.06.004
  • Knapton AG. Palladium alloys for hydrogen diffusion membranes. Platinum Metals Rev. 1977;21:7.
  • Shu J, Grandjean BPA, Vanneste A, et al. Catalytic palladium-based membrane reactors - a review. Can J Chem Eng. 1991;69:1036–1060.10.1002/cjce.v69:5
  • Karavanov AN, Gryaznov VM. Hydrogen of acetylenic and ethylenic alcohols in the liquid-phase on memebrane catalysts consisting of binary-alloys of palladium with nickel and ruthenium. Kinetics and Catalysis. 1984;25:56–60.
  • Gryaznov VM, Smirnov VS. Selective hydrogenation on membrane catalysts. Kinetics and Catalysis. 1977;18:485–485.
  • Batirev IG, Karavanov AN, Leiro JA. Surface segregation and catalytic properties of Pd-Ru alloys. Surf Sci. 1993;289:357–362.10.1016/0039-6028(93)90666-8
  • Frölich K, Severin H, Hempelmann R, et al. Local magnetic moments of ruthenium in palladium/ruthenium/hydrogen alloys. Zeitschrift für Physikalische Chemie. 1980;119:33–52.10.1524/zpch.1980.119.1.033
  • Tripathi S, Bharadwaj S, Dharwadkar S. The Pd-Ru system (palladium-ruthenium). J Phase Equilib. 1993;14:638–642.10.1007/BF02669157
  • Alayoglu S, Eichhorn B. Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc. 2008;130:17479–17486.10.1021/ja8061425
  • Wu J, Li P, Pan YT, et al. Surface lattice-engineered bimetallic nanoparticles and their catalytic properties. Chem Soc Rev. 2012;41:8066–8074.10.1039/c2cs35189g
  • Santhi K, Thirumal E, Karthick S, et al. Structural and magnetic investigations on metastable Ag–Fe nanophase alloy. J Alloys Compd. 2013;557:172–178.10.1016/j.jallcom.2012.12.161
  • Kusada K, Yamauchi M, Kobayashi H, et al. Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc. 2010;132:15896–15898.10.1021/ja107362z
  • Herman S. Atomically-precise methods for synthesis of solid catalysts. In: Herman S, editor. Bimetallic Supported Catalysts from Single-source Precursors. Cambridge: The Royal Society of Chemistry; 2014. p. 55S.10.1039/1757-6733
  • Gu J, Zhang YW, Tao FF. Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev. 2012;41:8050–8065.10.1039/c2cs35184f
  • Sankar M, Dimitratos N, Miedziak PJ, et al. Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev. 2012;41:8099–8139.10.1039/c2cs35296f
  • Lim B, Jiang M, Camargo PH, et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science. 2009;324:1302–1305.10.1126/science.1170377
  • Zhang H, Jin M, Wang J, et al. Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J Am Chem Soc. 2011;133:10422–10425.10.1021/ja204447k
  • Wang L, Yamauchi Y. Metallic nanocages: synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J Am Chem Soc. 2013;135:16762–16765.10.1021/ja407773x
  • Chen G, Desinan S, Nechache R, et al. Bifunctional catalytic/magnetic Ni@ Ru core–shell nanoparticles. Chem Commun. 2011;47:6308–6310.10.1039/c1cc10619h
  • Chen G, Desinan S, Rosei R, et al. Synthesis of Ni–Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chem-Eur J. 2012;18:7925–7930.10.1002/chem.201200292
  • Christensen ST, Feng H, Libera JL, et al. Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett. 2010;10:3047–3051.10.1021/nl101567m
  • Gu J, Guo Y, Jiang YY, et al. Robust phase control through hetero-seeded epitaxial growth for face-centered cubic Pt@Ru nanotetrahedrons with superior hydrogen electro-oxidation activity. J Phys Chem C. 2015;119:17697–17706.10.1021/acs.jpcc.5b04587
  • Roth C, Papworth AJ, Hussain I, et al. A Pt/Ru nanoparticulate system to study the bifunctional mechanism of electrocatalysis. J Electroanal Chem. 2005;581:79–85.10.1016/j.jelechem.2005.04.014
  • Romanenko AV, Tyschishin EA, Moroz EM, et al. Influence of ruthenium addition on sintering of carbon-supported palladium. Appl Catal A-Gen. 2002;227:117–123.10.1016/S0926-860X(01)00928-0
  • Monyoncho EA, Ntais S, Soares F, et al. Synergetic effect of palladium-ruthenium nanostructures for ethanol electrooxidation in alkaline media. J Power Sources. 2015;287:139–149.10.1016/j.jpowsour.2015.03.186
  • Kusada K, Kobayashi H, Ikeda R, et al. Solid solution alloy nanoparticles of immiscible Pd and Ru elements neighboring on Rh: changeover of the thermodynamic behavior for hydrogen storage and enhanced CO-oxidizing ability. J Am Chem Soc. 2014;136:1864–1871.10.1021/ja409464g
  • Ge J, He D, Bai L, et al. Ordered porous Pd octahedra covered with monolayer Ru atoms. J Am Chem Soc. 2015;137:14566–14569.10.1021/jacs.5b08956
  • Wu D, Zheng Z, Gao S, et al. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation. Phys Chem Chem Phys. 2012;14:8051–8057.10.1039/c2cp40536a
  • Wu D, Cao M, Shen M, et al. Sub-5 nm Pd-Ru nanoparticle alloys as efficient catalysts for formic acid electrooxidation. Chem Cat Chem. 2014;6:1731–1736.10.1002/cctc.v6.6
  • Tang MH, Mao SJ, Li MM, et al. RuPd alloy nanoparticles supported on N-doped carbon as an efficient and stable catalyst for benzoic acid hydrogenation. ACS Catal. 2015;5:3100–3107.10.1021/acscatal.5b00037
  • Greeley J, Mavrikakis M. Alloy catalysts designed from first principles. Nat Mater. 2004;3:810–815.10.1038/nmat1223
  • Kim YS, Mun BS, Ross PN. Photoemission study of Pd thin films on Ru(0001) surface. Curr Appl Phys. 2011;11:1179–1182.10.1016/j.cap.2011.02.015
  • Rodriguez JA, Campbell RA, Goodman DW. Electron-donor electron-acceptor interactions in bimetallic surfaces - theory and XPS studies. J Phys Chem. 1991;95:5716–5719.10.1021/j100168a003
  • Rodriguez JA, Goodman DW. The nature of the metal-metal bond in bimetallic surfaces. Science. 1992;257:897–903.10.1126/science.257.5072.897
  • Hammer B, Morikawa Y, Norskov JK. CO chemisorption at metal surfaces and overlayers. Phys Rev Lett. 1996;76:2141–2144.10.1103/PhysRevLett.76.2141
  • Hammer B, Norskov JK. Theoretical surface science and catalysis - calculations and concepts. Adv Catal. 2000;45:71–129.
  • Bergbreiter A, Hoster HE, Behm RJ. Segregation and stability in surface alloys: Pd(x)Ru(1-x)/Ru(0001) and Pt(x)Ru(1-x)/Ru(0001). Chem Phys Chem. 2011;12:1148–1154.10.1002/cphc.v12.6
  • Ramos M, Minniti M, Diaz C, et al. Environment-driven reactivity of H2 on PdRu surface alloys. Phys Chem Chem Phys. 2013;15:14936–14940.10.1039/c3cp52001c
  • Shimada I, Oshima Y, Otomo J. Reaction analysis of ethanol electro-oxidation on PdRu/C catalyst at intermediate temperature. J Chem Eng Jpn. 2014;47:514–520.10.1252/jcej.13we296
  • Sun L, Cao D, Wang G. Pd–Ru/C as the electrocatalyst for hydrogen peroxide reduction. J App Electrochem. 2008;38:1415–1419.10.1007/s10800-008-9581-8
  • Wang D, Li Y. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater. 2011;23:1044–1060.10.1002/adma.201003695
  • Petr Vanýsek. Electrochemical Series. In: Lide DR. CRC handbook of chemistry and physics. Boca Raton: CRC Press; 2005. P. 8(23).
  • Xia Y, Xiong Y, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48:60–103.10.1002/anie.200802248
  • Wu D, Cao M, Cao R. Ru-assisted synthesis of {111}-faceted Pd truncated bipyramids: a highly reactive, stable and restorable catalyst for formic acid oxidation. Chem Commun. 2014;50:12970–12972.10.1039/C4CC05855K
  • Long R, Rao Z, Mao K, et al. Efficient coupling of solar energy to catalytic hydrogenation by using well-designed palladium nanostructures. Angew Chem Int Ed. 2015;54:2425–2430.10.1002/anie.201407785
  • Xiong Y, Chen J, Wiley B, et al. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005;5:1237–1242.10.1021/nl0508826
  • Ye H, Wang Q, Catalano M, et al. Ru nanoframes with an fcc structure and enhanced catalytic properties. Nano Lett. 2016;16:2812–2817.10.1021/acs.nanolett.6b00607
  • Babu PK, Kim HS, Oldfield E, et al. Electronic alterations caused by ruthenium in Pt-Ru alloy nanoparticles as revealed by electrochemical NMR. J Phys Chem B. 2003;107:7595–7600.10.1021/jp022679u
  • Petrii OA. Pt–Ru electrocatalysts for fuel cells: a representative review. J Solid State Electrochem. 2008;12:609–642.10.1007/s10008-007-0500-4
  • Alayoglu S, Nilekar AU, Mavrikakis M, et al. Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater. 2008;7:333–338.10.1038/nmat2156
  • Yang A, Sakata O, Kusada K, et al. The valence band structure of AgxRh1–x alloy nanoparticles. Appl Phys Lett. 2014;105:153109.10.1063/1.4896857
  • Kobayashi H, Kusada K, Kitagawa H. Creation of novel solid-solution alloy nanoparticles on the basis of Density-of-States engineering by interelement fusion. Acc Chem Res. 2015;48:1551–1559.10.1021/ar500413e
  • Mavrikakis M, Baumer M, Freund HJ, et al. Structure sensitivity of CO dissociation on Rh surfaces. Catal Lett. 2002;81:153–156.10.1023/A:1016560502889
  • Kutubi M, Sato K, Wada K, et al. Dual lewis acidic/basic Pd0. 5Ru0. 5-Poly (N-vinyl-2-pyrrolidone) alloyed nanoparticle: outstanding catalytic activity and selectivity in Suzuki-Miyaura Cross-Coupling reaction. Chem Cat Chem. 2015;7:3887–3894.10.1002/cctc.201500758
  • Sato K, Tomonaga H, Yamamoto T, et al. A synthetic pseudo-Rh: NOx reduction activity and electronic structure of Pd-Ru solid-solution alloy nanoparticles. Sci Rep. 2016;6:28265.10.1038/srep28265
  • Rice C, Ha S, Masel RI, et al. Catalysts for direct formic acid fuel cells. J Power Sources. 2003;115:229–235.10.1016/S0378-7753(03)00026-0
  • Mazumder V, Chi M, Mankin MN, et al. A facile synthesis of MPd (M= Co, Cu) nanoparticles and their catalysis for formic acid oxidation. Nano Lett. 2012;12:1102–1106.10.1021/nl2045588
  • Awasthi R, Singh RN. Graphene-supported Pd-Ru nanoparticles with superior methanol electrooxidation activity. Carbon. 2013;51:282–289.10.1016/j.carbon.2012.08.055
  • Ma L, He H, Hsu A, et al. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. J Power Sources. 2013;241:696–702.10.1016/j.jpowsour.2013.04.051
  • Zhang K, Bin D, Yang B, et al. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation. Nanoscale. 2015;7:12445–12451.10.1039/C5NR02713F
  • Dash S, Munichandraiah N. Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis. Electrochim Acta. 2015;180:339–352.10.1016/j.electacta.2015.07.020
  • St. John S, Atkinson RW, Unocic KA, et al. Platinum and palladium overlayers dramatically enhance the activity of ruthenium nanotubes for alkaline hydrogen oxidation. ACS Catal. 2015;5:7015–7023.10.1021/acscatal.5b01432
  • St. John S, Atkinson RW, Unocic RR, et al. Ruthenium-alloy electrocatalysts with tunable hydrogen oxidation kinetics in alkaline electrolyte. J Phys Chem C. 2015;119:13481–13487.10.1021/acs.jpcc.5b03284
  • Huang C, Yang X, Yang H, et al. High-performance PdRu bimetallic catalyst supported on mesoporous silica nanoparticles for phenol hydrogenation. Appl Surf Sci. 2014;315:138–143.10.1016/j.apsusc.2014.07.011
  • Feynman RP. There’s plenty of room at the bottom. Engineering and science. 1960;23:22–36
  • Yin X, Cooper VR, Weitering HH, et al. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): importance of orbital symmetry in the application of the d-Band model. J Phys Chem C. 2015;119:23495–23502.10.1021/acs.jpcc.5b06653
  • Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method. J Am Chem Soc. 2013;135:5493–5496.10.1021/ja311261s