1,482
Views
15
CrossRef citations to date
0
Altmetric
Engineering and structural materials

Grafting the surface of carbon nanotubes and carbon black with the chemical properties of hyperbranched polyamines

, , , , , , & show all
Pages 541-553 | Received 26 Apr 2016, Accepted 04 Aug 2016, Published online: 12 Sep 2016

References

  • Maiti UN, Lee WJ, Lee JM, et al. 25th anniversary article: chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Adv. Mater. 2014;26:40–67.
  • Peng X, Wong SS. Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 2009;21:625–642.
  • Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chemie Int. Ed. 2002;41:1853–1859.10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  • Balasubramanian K, Burghard M. Chemically functionalized carbon nanotubes. Small. 2005;1:180–192.
  • Singh P, Campidelli S, Giordani S, et al. Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 2009;38:2214–2230.10.1039/b518111a
  • Li Z, Dai X, Du K, et al. Reduced Graphene Oxide/O-MWCNT hybrids functionalized with p-Phenylenediamine as high-performance MoS2 electrocatalyst support for hydrogen evolution reaction. J. Phys. Chem. C. 2016;120:1478–1487.
  • Xing Z-C, Chang Y, Kang I-K. Immobilization of biomolecules on the surface of inorganic nanoparticles for biomedical applications. Sci. Technol. Adv. Mater. 2010;11:014101.10.1088/1468-6996/11/1/014101
  • Kamiya H, Iijima M. Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci. Technol. Adv. Mater. 2010;11:044304.10.1088/1468-6996/11/4/044304
  • Fujigaya T, Nakashima N. Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci. Technol. Adv. Mater. 2015;16:024802.10.1088/1468-6996/16/2/024802
  • Monthioux M. Carbon meta-nanotubes. Hoboken, NJ: John Wiley & Sons; 2012.
  • Krueger A. Carbon materials and nanotechnology. vol. 1. Weinheim: Wiley-VCH; 2010.10.1002/9783527629602
  • Nakashima N. Solubilization of single-walled carbon nanotubes with condensed aromatic compounds. Sci. Technol. Adv. Mater. 2006;7:609–616.10.1016/j.stam.2006.08.004
  • Misak HE, Asmatulu R, O’Malley M, et al. Functionalization of carbon nanotube yarn by acid treatment. Int. J. Smart Nano Mater. 2014;5:34–43.10.1080/19475411.2014.896426
  • Adhikari PD, Jeon S, Cha M-J, et al. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material. Sci. Technol. Adv. Mater. 2014;15:015007.10.1088/1468-6996/15/1/015007
  • Bekyarova E, Itkis ME, Ramesh P, et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009;131:1336–1337.10.1021/ja8057327
  • Some S, Kim J, Lee K, et al. Highly air-stable phosphorus-doped n-type graphene field-effect transistors. Adv. Mater. 2012;24:5481–5486.
  • Hwang JO, Park JS, Choi DS, et al. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes. ACS Nano. 2012;6:159–167.
  • Hwang SK, Lee JM, Kim S, et al. Flexible multilevel resistive memory with controlled charge trap B- and N-doped carbon nanotubes. Nano Lett. 2012;12:2217–2221.
  • Abdelkader VK, Domingo-García M, Melguizo M, et al. Covalent bromination of multi-walled carbon nanotubes by iodine bromide and cold plasma treatments. Carbon N. Y. 2015;93:276–285.
  • Li Y, Shu H, Niu X, et al. Electronic and optical properties of edge-functionalized graphene quantum dots and the underlying mechanism. J. Phys. Chem. C. 2015;119:24950–24957.10.1021/acs.jpcc.5b05935
  • Van Hooijdonk E, Bittencourt C, Snyders R, et al. Functionalization of vertically aligned carbon nanotubes. Beilstein J. Nanotechnol. 2013;4:129–152.
  • Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem. Rev. 2010;110:5366–5397.
  • Barthos R, Méhn D, Demortier A, et al. Functionalization of single-walled carbon nanotubes by using alkyl-halides. Carbon N. Y. 2005;43:321–325.
  • Wang Z, Yang X, Wang Q, et al. Epoxy resin nanocomposites reinforced with ionized liquid stabilized carbon nanotubes. Int. J. Smart Nano Mater. 2011;2:176–193.10.1080/19475411.2011.594104
  • Gibson J, McKee J, Freihofer G, et al. Enhancement in ballistic performance of composite hard armor through carbon nanotubes. Int. J. Smart Nano Mater. 2013;4:212–228.10.1080/19475411.2013.870938
  • Andreoli E, Barron AR. Effect of spray-drying and cryo-milling on the CO2 absorption performance of C60 cross-linked polyethyleneimine. J. Mater. Chem. A. 2015;3:4323–4329.10.1039/C4TA06936F
  • Dillon EP, Crouse CA, Barron AR. Synthesis, characterization, and carbon dioxide adsorption of covalently attached polyethyleneimine-functionalized single-wall carbon nanotubes. ACS Nano. 2008;2:156–164.10.1021/nn7002713
  • Zhou J, Wang C, Qian Z, et al. Highly efficient fluorescent multi-walled carbon nanotubes functionalized with diamines and amides. J. Mater. Chem. 2012;22:11912–11914.10.1039/c2jm31192e
  • Takeuchi Y, Fujiki K, Tsubokawa N. Preparation of amphiphilic carbon black by postgrafting of polyethyleneimine to grafted polymer chains on the surface. Polym. Bull. 1998;41:85–90.
  • Hu H, Ni Y, Mandal SK, et al. Polyethyleneimine functionalized single-walled carbon nanotubes as a substrate for neuronal growth. J. Phys. Chem. B. 2005;109:4285–4289.10.1021/jp0441137
  • Liu Y, Wu DC, Zhang WD, et al. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chemie Int. Ed. 2005;44:4782–4785.10.1002/(ISSN)1521-3773
  • Dong H, Ding L, Yan F, et al. The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials. 2011;32:3875–3882.10.1016/j.biomaterials.2011.02.001
  • Chen B, Liu M, Zhang L, et al. Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 2011;21:7736–7741.10.1039/c1jm10341e
  • Cai X, Lin M, Tan S, et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon N. Y. 2012;50:3407–3415.
  • Jia H, Lian Y, Ishitsuka M, et al. Centrifugal purification of chemically modified single-walled carbon nanotubes. Sci. Technol. Adv. Mater. 2016;6:571–581.
  • Peñas-Sanjuán A, López-Garzón R, Domingo-García M, et al. An efficient procedure to bond nanostructured nitrogen functionalities to carbon surfaces. Carbon N. Y. 2012;50:3977–3986.
  • Rivas BL, Geckeler KE. Synthesis and metal complexation of poly(ethyleneimine) and derivatives. In: Abe A, Albertsson AC, Coates GW, et al., editors. Polymer synthesis oxidation processes Advances in Polymer Science vol. 102. Springer Berlin Heidelberg; 1992. p. 171–188.
  • Peñas-Sanjuán A, López-Garzón R, López-Garzón J, et al. Preparation of a poly-alkylamine surface-functionalized carbon with excellent performance as a Pd(II) scavenger. Carbon N. Y. 2012;50:2350–2352.
  • Kobayashi S, Hiroishi K, Tokunoh M, et al. Chelating properties of linear and branched poly(ethylenimines). Macromolecules. 1987;20:1496–1500.10.1021/ma00173a009
  • Morales-Lara F, Pérez-Mendoza MJ, Altmajer-Vaz D, et al. Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J. Phys. Chem. C. 2013;117:11647–11655.10.1021/jp4017097
  • Fontanelli M, Micheloni M. Potentiometric and spectrophotometric automatic titrations I Spanish-Italian Congress on Thermodynamics of Metal Complexes. Peñíscola (Comunitat Valenciana), Spain; 1990. Edited by International Group of Thermodynamic of Metal Complexes.
  • Wenker H. The preparation of ethylene imine from monoethanolamine. J. Am. Chem. Soc. 1935;57:2328.10.1021/ja01314a504
  • Jones GD, Langsjoen A, Neumann SMMC, et al. The polymerization of ethyleneimine. J. Org. Chem. 1944;09:125–147.10.1021/jo01184a002
  • Hawker CJ, Lee R, Frechet JMJ. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc. 1991;113:4583–4588.10.1021/ja00012a030
  • Ottenbourgs BT, Adriaensens PJ, Reekmans BJ, et al. Development and optimization of fast quantitative carbon-13 NMR characterization methods of novolac resins. Ind. Eng. Chem. Res. 1995;34:1364–1370.10.1021/ie00043a042
  • Pierre TS, Geckle M. Carbon-13 NMR analysis of branched polyethyleneimine. J. Macromol. Sci. Chem. 1985;22:877–887.10.1080/00222338508056641
  • Krämer M, Stumbé JF, Grimm G, et al. Dendritic polyamines: simple access to new materials with defined treelike structures for application in nonviral gene delivery. ChemBioChem. 2004;5:1081–1087.10.1002/cbic.v5:8
  • Krämer M, Pérignon N, Haag R, et al. Water-soluble dendritic architectures with carbohydrate shells for the templation and stabilization of catalytically active metal nanoparticles. Macromolecules. 2005;38:8308–8315.10.1021/ma0510791
  • Basiuk EV, Basiuk VA, Meza-Laguna V, et al. Solvent-free covalent functionalization of multi-walled carbon nanotubes and nanodiamond with diamines: looking for cross-linking effects. Appl. Surf. Sci. 2012;259:465–476.
  • Lin T, De Zhang W, Huang J, et al. A DFT study of the amination of fullerenes and carbon nanotubes: reactivity and curvature. Phys. Org. Chem. 2005;109:13755–13760.
  • Contreras-Torres FF, Basiuk EV, Basiuk VA, et al. Nanostructured diamine-fullerene derivatives: computational density functional theory study and experimental evidence for their formation via gas-phase functionalization. J. Phys. Chem. A 2012;116:1663–1676.
  • Ramirez-Calera IJ, Meza-Laguna V, Gromovoy TY, et al. Solvent-free functionalization of fullerene C60 and pristine multi-walled carbon nanotubes with aromatic amines. Appl. Surf. Sci. 2015;328:45–62.
  • Liao K-S, Wan A, Batteas JD, et al. Superhydrophobic surfaces formed using layer-by-layer self-assembly with aminated multiwall carbon nanotubes. Surf. Chem. Colloids. 2008;24:4245–4253.
  • Foillard S, Zuber G, Doris E. Polyethylenimine-carbon nanotube nanohybrids for siRNA-mediated gene silencing at cellular level. Pharmaceuticals. 2011;3:1461–1464.
  • Louette P, Bodino F, Pireaux J-J. Nylon 6,6 (N66) XPS reference core level and energy loss spectra. Surf. Sci. Spectra. 2006;12:6–11.
  • Eby DM, Artyushkova K, Paravastu AK, et al. Probing the molecular structure of antimicrobial peptide-mediated silica condensation using X-ray photoelectron spectroscopy. J. Mater. Chem. 2012;22:9875–9883.10.1039/c2jm30837a
  • Stevens JS, Byard SJ, Seaton CC, et al. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes. Phys. Chem. Chem. Phys. 2014;16:1150–1160.10.1039/C3CP53907E
  • Zhang L, Chatterjee A, Ebrahimi M, et al. Hydrogen-bond mediated transitional adlayer of glycine on Si(111)7×7 at room temperature. J. Chem. Phys. 2009;130:121103.10.1063/1.3106762
  • Yu X, Hantsche H. Some aspects of the charging effect in monochromatized focused XPS. Fresenius. J. Anal. Chem. 1993;346:233–236.10.1007/BF00321421
  • Kundu S, Wang Y, Xia W, et al. Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C. 2008;112:16869–16878.10.1021/jp804413a
  • Chen C, Liang B, Ogino A, et al. Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. J. Phys. Chem. C. 2009;113:7659–7665.10.1021/jp9012015
  • Chiang YC, Lin WH, Chang YC. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Appl. Surf. Sci. 2011;257:2401–2410.10.1016/j.apsusc.2010.09.110
  • Steiner UB, Caseri WR, Suter UW, et al. Ultrathin layers of low- and high-molecular-weight imides on gold and copper. Langmuir. 1993;9:3245–3254.10.1021/la00035a079