4,365
Views
43
CrossRef citations to date
0
Altmetric
New topics/Others

Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix : γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3

, , , & ORCID Icon
Pages 597-609 | Received 18 Jan 2016, Accepted 06 Aug 2016, Published online: 29 Sep 2016

References

  • Stevens PD, Fan J, Gardimalla HMR, et al. Superparamagnetic nanoparticle-supported catalysis of suzuki cross-coupling reactions. Org. Lett. 2005;7:2085–2088.
  • Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415.
  • Wu W, Jiang C, Roy VAL. Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nanoscale. 2015;7:38–58.
  • Pankhurst QA, Connolly J, Jones SK, et al. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:R167–R181.
  • Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.
  • Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. Engl. 2007;46:1222–1244.
  • Safarik I, Safarikova M. Magnetic nano- and microparticles in biotechnology. Chem Pap. 2009;63:497–505.
  • Tran N, Webster TJ. Magnetic nanoparticles: biomedical applications and challenges. J. Mater. Chem. 2010;20:8760–8767.
  • Wu W, Wu Z, Yu T, et al. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015;16:023501–023544.
  • Zboril R, Mashlan M, Petridis D. Iron(III) oxides from thermal processessynthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 2002;14:969–982.
  • Varadwaj KSK, Panigrahi MK, Ghose J. Effect of capping and particle size on Raman laser-induced degradation of γ-Fe2O3 nanoparticles. J. Solid State Chem. 2004;177:4286–4292.
  • Soler MAG, Alcantara GB, Soares FQ, et al. Study of molecular surface coating on the stability of maghemite nanoparticles. Surf. Sci. 2007;601:3921–3925.
  • El Mendili Y, Bardeau J-F, Randrianantoandro N, et al. New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: a Raman spectroscopic study. J. Raman Spectrosc. 2011;42:239–242.
  • El Mendili Y, Bardeau J-F, Randrianantoandro N, et al. Insights into the mechanism related to the phase transition from gamma-Fe2O3 to alpha-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. J. Phys. Chem. C. 2012;116:23785–23792.
  • El Mendili Y, Grasset F, Randrianantoandro N, et al. Improvement of thermal stability of maghemite nanoparticles coated with oleic acid and oleylamine molecules: investigations under laser irradiation. J. Phys. Chem. C. 2015;119:10662–10668.
  • Chanéac C, Tronc E, Jolivet JP. Thermal behavior of spinel iron oxide-silica composites. Nanostruct. Mater. 1995;6:715–718.
  • Mornet S, Grasset F, Portier J, et al. Maghemite@ silica nanoparticles for biological applications. Eur. Cell Mater. 2002;3:110–113.
  • Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110.
  • Sartoratto PPC, Caiado KL, Pedroza RC, et al. The thermal stability of maghemite-silica nanocomposites: An investigation using X-ray diffraction and Raman spectroscopy. J Alloys Compd. 2007;434-435:650–654.
  • Wu W, He Q, Jiang C. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 2008;3:397–415.
  • Ortega D, Garitaonandia JS, Barrera-Solano C, et al. γ-Fe2O3/SiO2 nanocomposites for magneto-optical applications: Nanostructural and magnetic properties. J. Non Cryst. Solids. 2006;352:2801–2810.
  • Tronc E, Chanéac C, Jolivet JP. Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 1998;139:93–104.
  • Jin J, Ohkoshi S, Hashimoto K. Giant coercive field of nanometer- sized iron oxide. Adv. Mater. 2004;16:48–51.
  • Tronc E, Chanéac C, Jolivet JP, et al. Spin collinearity and thermal disorder in ɛ-Fe2O3. J. Appl. Phys. 2005;98:053901–053905.
  • McClean RG, Schofield MA, Kean WF, et al. Botanical iron minerals: correlation between nanocrystal structure and modes of biological self-assembly. Eur. J. Mineral. 2001;13:1235–1242.
  • Barcova K, Mashlan M, Zboril R, et al. Thermal decomposition of almandine garnet: Mössbauer study. Czech. J. Phys. 2001;51:749–754.
  • Barcova K, Mashlan M, Martinec P. Mössbauer study of the thermal behaviour of garnets used in high-energy water jet technologies. Hyperfine Interact. 2002;139/140:463–469.
  • Van Wonterghem J, Mørup S, Villadsen J, et al. Formation and stability of γ-iron in high-temperature treated nontronite. J. Mater. Sci. 1987;22:438–442.
  • Gich M, Frontera C, Roig A, et al. High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem. Mater. 2006;18:3889–3897.
  • Popovici M, Gich M, Nižňanský D, et al. Optimized synthesis of the elusive epsilon-Fe2O3 phase via sol-gel chemistry. Chem. Mat. 2004;16:5542–5548.
  • Brázda P, Nižňanský D, Rehspringer J-L, et al. Novel sol–gel method for preparation of high concentration ε-Fe2O3/SiO2 nanocomposite. J. Sol-Gel Sci. Technol. 2009;51:78–83.
  • Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 1982;17:1247–1248.
  • El Mendili Y, Bardeau J-F, Grasset F, et al. Magnetic interactions in γ-Fe2O3@SiO2 nanocomposites. J. Appl. Phys. 2014;116:053905–53909.
  • Daou TJ, Begin-Colin S, Grenèche J-M, et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mater. 2007;19:4494–4505.
  • Santoyo Salazar JS, Perez L, de Abril O, et al. Magnetic iron oxide nanoparticles in 10−40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem. Mater. 2011;23:1379–1386.
  • Prene P, Tronc E, Jolivet JP, et al. Magnetic-properties of isolated gamma-Fe2O3 particles. IEEE Trans. Magn. 1993;29:2658–2660.
  • Cador O, Grasset F, Haneda H, et al. Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample. J. Magn. Magn. Mater. 2004;268:232–236.
  • Bardeau J-F, Gourbil A, Dutreilh-Colas M, et al. X-ray reflectivity study of acid–base post-synthesis treatments of mesoporous thin films templated by P123. Thin Solid Films. 2006;495:191–196.
  • Dourdain S, Mehdi A, Bardeau J-F, et al. Determination of porosity of mesoporous silica thin films by quantitative X-ray reflectivity analysis and GISAXS. Thin Solid Films. 2006;495:205–209.
  • Lutterotti L. Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B. 2010;268:334–340.
  • Lutterotti L, Campostrini R, Gialanella S, et al. Microstructural characterizationof amorphous and nanocrystalline structures through diffraction methods. Mater. Sci. Forum. 2000;343-346:657–664.
  • de Faria DLA, Venâncio Silva SV, de Oliveira MT. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997;28:873–878.
  • Chamritski I, Burns G. Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B. 2005;109:4965–4968.
  • Jubb AM, Allen HC. Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces. 2010;2:2804–2812.
  • Delahaye E, Escax V, El Hassan N, et al. Nanocasting: using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed γ-Fe2O3 nanoparticles. J. Phys. Chem. B. 2006;110:26001–26011.
  • Dézsi I, Coey JMD. Magnetic and thermal properties of ε-Fe2O3. Phys. Status Solidi A. 1973;15:681–685.
  • Machala Libor, Tuček J, Zbořil R. Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 2011;23:3255–3272.
  • Shebanova ON, Lazor P. Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J. Raman Spectrosc. 2003;34:845–852.
  • Cabellos ET. Synthesis of γ-Fe2O3-SiO2 composite nanoparticles targeting magnetic resonance imaging and magnetic hyperthermia applications [dissertation]. Barcelona (Spain): University Autonoma de Barcelona; 2009.
  • Bukhtiyarova GA, Shuvaeva MA, Bayukov OA, et al. Facile synthesis of nanosized ε-Fe2O3 particles on the silica support. J. Nanopart. Res. 2011;13:5527–5534.
  • Alcalá MD, Real C. Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites. Solid State Ion. 2006;177:955–960.
  • Taboada E, Gich M, Roig A. Nanospheres of silica with an ε-Fe2O3 single crystal nucleus. ACS Nano. 2009;3:3377–3382.
  • El Mendili Y. Etude des propriétés structurales et magnétiques de nanoparticules de maghémite dispersées dans une matrice de silice [Study of structural and magnetic properties of the maghemite nanoparticles dispersed in a silica matrix] [dissertation]. Le Mans (France): Université du Maine; 2011.
  • Barick KC, Varaprasad BSD, Ch S, et al. Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix. J. Non-Cryst. Solids. 2010;356:153–159.
  • Gich M, Roig A, Taboada E, et al. Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Discuss. 2007;136:345–354.
  • Gich M, Gazquez J, Roig A, et al. Epitaxial stabilization of ε-Fe2O3 (00 l) thin films on SrTiO3 (111). Appl. Phys. Lett. 2010;96:112508–112510.
  • David B, Pizúrová N, Synek P, et al. ε-Fe2O3 nanoparticles synthesized in atmospheric-pressure microwave torch. Mater. Lett. 2014;116:370–373.
  • Stagi L, De Toro JA, Ardu A, et al. Surface effects under visible irradiation and heat treatment on the phase stability of γ-Fe2O3 nanoparticles and γ-Fe2O3 -SiO2 core-shell nanostructures. J. Phys. Chem. C. 2014;118:2857–2866.
  • Dejoie C, Sciau P, Li W, et al. Learning from the past: Rare ε-Fe2O3 in the ancient black-glazed Jian (Tenmoku) wares. Sci. Rep. 2014;4:4941–4950.