5,316
Views
74
CrossRef citations to date
0
Altmetric
Focus on advanced nanoprocessing and applications in sensorics

2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

, , , , & ORCID Icon
Pages 563-582 | Received 04 May 2016, Accepted 16 Aug 2016, Published online: 16 Sep 2016

References

  • Vetter J, Novák P, Wagner MR, et al. Ageing mechanisms in Lithium-ion batteries. J Power Sources. 2005;147:269–281.10.1016/j.jpowsour.2005.01.006
  • Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–657.
  • Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable Lithium batteries. Angew Chem Int Ed. 2008;47:2930–2946.10.1002/(ISSN)1521-3773
  • Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587–603.10.1021/cm901452z
  • Hu L, Wu H, La Mantia F, et al. Thin, flexible secondary Li-ion paper batteries. ACS Nano. 2010;4:5843–5848.10.1021/nn1018158
  • Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010;195:2419–2430.10.1016/j.jpowsour.2009.11.048
  • John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett. 1987;58:2486–2489.10.1103/PhysRevLett.58.2486
  • Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett. 1987;58:2059–2062.10.1103/PhysRevLett.58.2059
  • Joannopoulos JD, Villeneuve PR, Fan S. Photonic crystals: putting a new twist on light. Nature. 1997;386:143–149.10.1038/386143a0
  • Khokhar AZ, Rue RMDL, Johnson NP. Modified emission of semiconductor nano-dots in three-dimensional photonic crystals. IET Circ Devices Syst. 2007;1:210–214.10.1049/iet-cds:20060295
  • Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. Cambridge, Royal Society of Chemistry; 2009.
  • Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305:788–792.
  • Stein A, Wilson BE, Rudisill SG. Design and functionality of colloidal-crystal-templated materials-chemical applications of inverse opals. Chem Soc Rev. 2013;42:2763–2803.10.1039/C2CS35317B
  • Mesfin W, Sajeev J. Coherent control of spontaneous emission near a photonic band edge. J Opt B Quantum Semiclassical Opt. 2003;5:R43.
  • Sanders JV. Colour of precious opal. Nature. 1964;204:1151–1153.10.1038/2041151a0
  • Sanders JV, Murray MJ. Ordered arrangements of spheres of two different sizes in opal. Nature. 1978;275:201–203.10.1038/275201a0
  • López C. Materials aspects of photonic crystals. Adv Mater. 2003;15:1679–1704.10.1002/(ISSN)1521-4095
  • Lee YJ, Braun PV. Tunable Inverse opal hydrogel pH sensors. Adv Mater. 2003;15:563–566.10.1002/adma.200304588
  • Armstrong E, O’Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage. J Mater Chem C. 2015;3:6109–6143.10.1039/C5TC01083G
  • Blanco A, Chomski E, Grabtchak S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature. 2000;405:437–440.
  • Ledermann A, Hermatschweiler M, Cardematiri L, et al. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths. Nat Mater. 2006;5:924–945.
  • Choi JW, Aurbach D. Promise and reality of post-Lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.10.1038/natrevmats.2016.13
  • Zhang Y, Zhao Y, Ren J, et al. Advances in wearable fiber-shaped Lithium-Ion batteries. Adv Mater. 2016;28:4524–4531.
  • Nishide H, Oyaizu K. Toward flexible batteries. Science. 2008;319:737–738.10.1126/science.1151831
  • O’Dwyer C. Stretching the performance of wearable Li-ion batteries. NPG Asia Mater. 2014;6:e139.10.1038/am.2014.97
  • Etacheri V, Marom R, Elazari R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci. 2011;4:3243–3262.10.1039/c1ee01598b
  • Liu J, Zhang HG, Wang J, et al. Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv Mater. 2014;26:7096–7101.10.1002/adma.201402552
  • Long JW, Dunn B, Rolison DR, et al. Three-dimensional battery architectures. Chem Rev. 2004;104:4463–4492.
  • Cheah SK, Perre E, Rooth M, et al. Self-supported three-dimensional nanoelectrodes for microbattery applications. Nano Lett. 2009;9:3230–3233.10.1021/nl9014843
  • Armstrong MJ, O’Dwyer C, Macklin WJ, et al. Evaluating the performance of nanostructured materials as Lithium-ion battery electrodes. Nano Res. 2014;7:1–62.10.1007/s12274-013-0375-x
  • Bhatt MD, O’Dwyer C. Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys. 2015;17:4799–4844.10.1039/C4CP05552G
  • Gogotsi Y, Simon P. True performance metrics in electrochemical energy storage. Science. 2011;334:917–918.10.1126/science.1213003
  • Roberts M, Johns P, Owen J, et al. 3D Lithium ion batteries-from fundamentals to fabrication. J Mater Chem. 2011;21:9876–9890.10.1039/c0jm04396f
  • Rolison DR. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev. 2009;38:226–252.10.1039/B801151F
  • Stein A. Energy storage: batteries take charge. Nat Nanotechnol. 2011;6:262–263.10.1038/nnano.2011.69
  • Scrosati B, Garche J. Lithium batteries: status, prospects and future. J Power Sources. 2010;195:2419–2430.10.1016/j.jpowsour.2009.11.048
  • Arico AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366–377.10.1038/nmat1368
  • Pikul JH, Zhang HG, Cho J, et al. High-power Lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun. 2013;4:1732–1736.10.1038/ncomms2747
  • O’Dwyer C. Colour-coded batteries – inverse opal materials circuitry for enhanced electrochemical energy storage and optically encoded diagnostics. Adv Mater. 2016;28:5681–5688.10.1002/adma.v28.27
  • Umeda GA, Chueh WC, Noailles L, et al. Inverse opal ceria-zirconia: architectural engineering for heterogeneous catalysis. Energy Environ Sci. 2008;1:484–486.10.1039/b810641j
  • Lee S, Lee Y, Kim DH, et al. Carbon-deposited TiO2 3D inverse opal photocatalysts: visible-light photocatalytic activity and enhanced activity in a viscous solution. ACS Appl Mater Inter. 2013;5:12526–12532.10.1021/am403820e
  • Waterhouse GIN, Chen W-T, Chan A, et al. Structural, optical, and catalytic support properties of γ-Al2O3 inverse opals. J Phys Chem C. 2015;119:6647–6659.10.1021/acs.jpcc.5b00437
  • Wei Y, Liu J, Zhao Z, et al. The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion: the metal-support interaction. J Catal. 2012;287:13–29.10.1016/j.jcat.2011.11.006
  • Xu J, Liu J, Zhao Z, et al. Easy synthesis of three-dimensionally ordered macroporous La1-xKxCoO3 catalysts and their high activities for the catalytic combustion of soot. J Catal. 2011;282:1–12.10.1016/j.jcat.2011.03.024
  • Guan G, Kusakabe K, Taneda M, et al. Catalytic combustion of methane over Pd-based catalyst supported on a macroporous alumina layer in a microchannel reactor. Chem Eng Jl. 2008;144:270–276.10.1016/j.cej.2008.06.001
  • Guan G, Zapf R, Kolb G, et al. Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels. Int J Hydrogen Energ. 2008;33:797–801.10.1016/j.ijhydene.2007.10.054
  • Han D, Li X, Zhang L, et al. Hierarchically ordered meso/macroporous gamma-alumina for enhanced hydrodesulfurization performance. Micropor Mesopor Mat. 2012;158:1–6.10.1016/j.micromeso.2012.03.022
  • Collins G, Blomker M, Osiak M, et al. Three-dimensionally ordered hierarchically porous tin dioxide inverted opals and immobilization of palladium nanoparticles for catalytic applications. Chem Mater. 2013;25:4312–4320.10.1021/cm402458v
  • Li J, Wu N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal Sci Technol. 2015;5:1360–1384.10.1039/C4CY00974F
  • Tsang M-Y, Pridmore NE, Gillie LJ, et al. Enhanced photocatalytic hydrogen generation using polymorphic macroporous TaON. Adv Mater. 2012;24:3406–3409.10.1002/adma.v24.25
  • Zhou M, Wu HB, Bao J, et al. Ordered macroporous BiVO4 architectures with controllable dual porosity for efficient solar water splitting. Angew Chem Int Ed. 2013;52:8579–8583.10.1002/anie.201302680
  • Zhou M, Bao J, Xu Y, et al. Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano. 2014;8:7088–7098.10.1021/nn501996a
  • Lu Y-R, Yin P-F, Mao J, et al. A stable inverse opal structure of Cadmium chalcogenide for efficient water splitting. J Mater Chem A. 2015;3:18521–18527.10.1039/C5TA03845F
  • Ma M, Kim JK, Zhang K, et al. Double-deck inverse opal photoanodes: efficient light absorption and charge separation in heterojunction. Chem Mater. 2014;26:5592–5597.10.1021/cm502073d
  • Yun G, Balamurugan M, Kim H-S, et al. Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting. J Phys Chem C. 2016;120:5906–5915.
  • Yoon K-Y, Lee J-S, Kim K, et al. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene. ACS Appl Mater Interfaces. 2014;6:22634–22639.10.1021/am506721a
  • Zhang K, Shi X, Kim JK, et al. Inverse opal structured α-Fe2O3 on graphene thin films: enhanced photo-assisted water splitting. Nanoscale. 2013;5:1939–1944.10.1039/c2nr33036a
  • Karuturi SK, Cheng C, Liu L, et al. Inverse opals coupled with nanowires as photoelectrochemical anode. Nano Energy. 2012;1:322–327.10.1016/j.nanoen.2012.01.001
  • Gun Y, Song GY, Quy VH, et al. Joint effects of photoactive TiO2 and fluoride-doping on SnO2 inverse opal nanoarchitecture for solar water splitting. ACS Appl Mater Interfaces. 2015;7:20292–20303.10.1021/acsami.5b05914
  • Coridan RH, Arpin KA, Brunschwig BS, et al. Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes. Nano Lett. 2014;14:2310–2317.10.1021/nl404623t
  • Colodrero S, Mihi A, Haggman L, et al. Porous one-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells. Adv Mater. 2009;21:764–770.10.1002/adma.v21:7
  • Chen JIL, von Freymann G, Choi SY, et al. Slow photons in the fast lane in chemistry. J Mater Chem. 2008;18:369–373.10.1039/B708474A
  • Zhang X, Liu Y, Lee S-T, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci. 2014;7:1409–1419.10.1039/c3ee43278e
  • Curti M, Schneider J, Bahnemann DW, et al. Inverse opal photonic crystals as a strategy to improve photocatalysis: underexplored questions. J Phys Chem Lett. 2015;6:3903–3910.10.1021/acs.jpclett.5b01353
  • Liu J, Jin J, Li Y, et al. Tracing the slow photon effect in a ZnO inverse opal film for photocatalytic activity enhancement. J Mater Chem A. 2014;2:5051–5059.10.1039/c3ta15044e
  • Deparis O, Mouchet SR, Su BL. Light harvesting in photonic crystals revisited: why do slow photons at the blue edge enhance absorption? Phys Chem Chem Phys. 2015;17:30525–30532.10.1039/C5CP04983K
  • Chen JIL, von Freymann G, Choi SY, et al. Amplified photochemistry with slow photons. Adv Mater. 2006;18:1915–1919.10.1002/(ISSN)1521-4095
  • Chen JIL, Ozin GA. Tracing the effect of slow photons in photoisomerization of azobenzene. Adv Mater. 2008;20:4784–4788.10.1002/adma.v20:24
  • Fattakhova-Rohlfing D, Zaleska A, Bein T. Three-dimensional Titanium dioxide nanomaterials. Chem Rev. 2014;114:9487–9558.10.1021/cr500201c
  • Chen X, Ye J, Ouyang S, et al. Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano. 2011;5:4310–4318.10.1021/nn200100v
  • Xie H, Li Y, Jin S, et al. Facile fabrication of 3D-ordered macroporous nanocrystalline iron oxide films with highly efficient visible light induced photocatalytic activity. J Phys Chem C. 2010;114:9706–9712.10.1021/jp102525y
  • Rahul TK, Sandhyarani N. Nitrogen-fluorine co-doped titania inverse opals for enhanced solar light driven photocatalysis. Nanoscale. 2015;7:18259–18270.10.1039/C5NR04663G
  • Li X, Zhen X, Meng S, et al. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants. Environ Sci Technol. 2013;47:9911–9917.10.1021/es401479k
  • Li X, Zhang X, Zheng X, et al. A facile preparation of ZnGa2O4 photonic crystals with enhanced light absorption and photocatalytic activity. J Mater Chem. A. 2014;2:15796–15802.10.1039/C4TA03333G
  • Wu M, Li Y, Deng Z, et al. Three-Dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency. ChemSusChem. 2011;4:1481–1488.10.1002/cssc.v4.10
  • Kim JK, Moon JH, Lee T-W, et al. Inverse opal tungsten trioxide films with mesoporous skeletons: synthesis and photoelectrochemical responses. Chem Commun. 2012;48:11939–11941.10.1039/c2cc36984b
  • Chen H, Chen S, Quan X, et al. Structuring a TiO2-based photonic crystal photocatalyst with schottky junction for efficient photocatalysis. Environ Sci Technol. 2010;44:451–455.10.1021/es902712j
  • Chen JIL, Loso E, Ebrahim N, et al. Synergy of slow photon and chemically amplified photochemistry in platinum nanocluster-loaded inverse titania opals. J Am Chem Soc. 2008;130:5420–5421.10.1021/ja800288f
  • Zhang Z, Zhang L, Hedhili MN, et al. plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting. Nano Lett. 2013;13:14–20.10.1021/nl3029202
  • Zhan Z, An J, Zhang H, et al. Three-dimensional plasmonic photoanodes based on Au-embedded TiO2 structures for enhanced visible-light water splitting. ACS Appl Mater Interfaces. 2014;6:1139–1144.10.1021/am404738a
  • Zhang L, Lin C-Y, Valev VK, et al. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting. Small. 2014;10:3970–3978.10.1002/smll.201400970
  • Chen Z, Fang L, Dong W, et al. Inverse opal structured Ag/TiO2 plasmonic photocatalyst prepared by pulsed current deposition and its enhanced visible light photocatalytic activity. J Mater Chem A. 2014;2:824–832.10.1039/C3TA13985A
  • Fang L, Nan F, Yang YW, et al. Enhanced photoelectrochemical and photocatalytic activity in visible-light-driven Ag/BiVO4 inverse opals. Appl Phys Lett. 2016;108:093902.10.1063/1.4943181
  • Lu Y, Yu H, Chen S, et al. Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ Sci Technol. 2012;46:1724–1730.10.1021/es202669y
  • Nan F, Kang Z, Wang J, et al. Carbon quantum dots coated BiVO4 inverse opals for enhanced photoelectrochemical hydrogen generation. Appl Phys Lett. 2015;106:153901.10.1063/1.4918290
  • Cheng CW, Karuturi SK, Liu LJ, et al. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Small. 2012;8:37–42.10.1002/smll.201101660
  • Kim K, Kim MJ, Kim SI, et al. Towards visible light hydrogen generation: quantum dot-sensitization via efficient light harvesting of hybrid-TiO2. Sci. Rep. 2013;3:3330.
  • Li C, Zhu XT, Zhang HF, et al. 3D ZnO/Au/CdS sandwich structured inverse opal as photoelectrochemical anode with improved performance. Adv Mater Interfaces. 2015;2:1500428.10.1002/admi.201500428
  • Zheng X, Meng S, Chen J, et al. Titanium dioxide photonic crystals with enhanced photocatalytic activity: matching photonic band gaps of TiO2 to the absorption peaks of dyes. J Phys Chem C. 2013;117:21263–21273.10.1021/jp404519j
  • Mitchell R, Brydson R, Douthwaite RE. Enhancement of hydrogen production using photoactive nanoparticles on a photochemically inert photonic macroporous support. Phys Chem Chem Phys. 2015;17:493–499.10.1039/C4CP04333B
  • Cho SI, Kwon WJ, Choi SJ, et al. Nanotube-based ultrafast electrochromic display. Adv Mater. 2005;17:171–175.10.1002/(ISSN)1521-4095
  • Yang Y, Kim D, Schmuki P. Electrochromic properties of anodically grown mixed V2O5–TiO2 nanotubes. Electrochem Commun. 2011;13:1021–1025.
  • Wang Y, Takahashi K, Lee K, et al. Nanostructured Vanadium oxide electrodes for enhanced Lithium-ion intercalation. Adv Funct Mater. 2006;16:1133–1144.10.1002/(ISSN)1616-3028
  • Tong Z, Hao J, Zhang K, et al. Improved electrochromic performance and Lithium diffusion coefficient in three-dimensionally ordered macroporous V2O5 films. J Mater Chem C. 2014;2:3651–3658.10.1039/C3TC32417F
  • Sakamoto JS, Dunn B. Hierarchical battery electrodes based on inverted opal structures. J Mater Chem. 2002;12:2859–2861.10.1039/b205634h
  • Taberna L, Mitra S, Poizot P, et al. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for Lithium-ion battery applications. Nat Mater. 2006;5:567–573.10.1038/nmat1672
  • Yao M, Okuno K, Iwaki T, et al. Long cycle-life LiFePO4/Cu-Sn Lithium ion battery using foam-type three-dimensional current collector. J Power Sources. 2010;195:2077–2081.10.1016/j.jpowsour.2009.10.014
  • Ripenbein T, Golodnitsky D, Nathan M, et al. Electroless nickel current collector for 3D-microbatteries. J Appl Electrochem. 2010;40:435–444.10.1007/s10800-009-0014-0
  • Shaijumon MM, Perre E, Daffos B, et al. Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv Mater. 2010;22:4978–4981.10.1002/adma.v22.44
  • Whitehead AH, Schreiber M. Current collectors for positive electrodes of Lithium-based batteries. J Electrochem Soc. 2005;152:A2105–A2113.10.1149/1.2039587
  • Ryu JH, Kim JW, Sung YE, et al. Failure modes of silicon powder negative electrode in Lithium secondary batteries. Electrochem Solid State Lett. 2004;7:A306–A309.10.1149/1.1792242
  • Guo JC, Wang CS. A polymer scaffold binder structure for high capacity silicon anode of Lithium-ion battery. Chem Commun. 2010;46:1428–1430.10.1039/b918727h
  • Reddy ALM, Shaijumon MM, Gowda SR, et al. Coaxial MnO2/carbon nanotube array electrodes for high-performance Lithium batteries. Nano Lett. 2009;9:1002–1006.10.1021/nl803081j
  • Lee SW, Yabuuchi N, Gallant BM, et al. High-power Lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol. 2010;5:531–537.10.1038/nnano.2010.116
  • Fischer AE, Pettigrew KA, Rolison DR, et al. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 2007;7:281–286.10.1021/nl062263i
  • Osiak M, Geaney H, Armstrong E, et al. Structuring materials for Lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance. J Mater Chem A. 2014;2:9433–9460.10.1039/c4ta00534a
  • Lytle, JC. Nanotechnology for Lithium-ion batteries. Abu-Lebdeh Y, Davidson I, editors. USA, Springer Science+Business Media, LLC; 2013.
  • Zhang H, Braun PV. Three-dimensional metal scaffold supported bicontinuous Silicon battery anodes. Nano Lett. 2012;12:2778–2783.10.1021/nl204551m
  • Song T, Jeon Y, Samal M, et al. A Ge inverse opal with porous walls as an anode for Lithium ion batteries. Energy Environ Sci. 2012;5:9028–9033.10.1039/c2ee22358a
  • Armstrong E, O’Connell J, Holmes JD, et al. 3D vanadium oxide inverse opal growth by electrodeposition. J Electrochem Soc. 2015;162:D605–D612.10.1149/2.0541514jes
  • Armstrong E, Osiak M, Geaney H, et al. 2D and 3D vanadium oxide inverse opals and hollow sphere arrays. CrystEngComm. 2014;16:10804–10815.10.1039/C4CE01797H
  • Armstrong E, McNulty D, Geaney H, et al. Electrodeposited structurally stable V2O5 inverse opal networks as high performance thin film Lithium batteries. ACS Appl Mater Interfaces. 2015;7:27006–27015.10.1021/acsami.5b09511
  • Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and discharge bulk battery electrodes. Nat Nanotechnol. 2011;6:277–281.10.1038/nnano.2011.38
  • Vu A, Qian Y, Stein A. Porous electrode materials for Lithium-ion batteries – how to prepare them and what makes them special. Adv Energy Mater. 2012;2:1056–1085.10.1002/aenm.v2.9
  • McNulty D, Geaney H, Armstrong E, et al. High performance inverse opal Li-ion battery with paired intercalation and conversion mode electrodes. J Mater Chem A. 2016;4:4448–4456.10.1039/C6TA00338A
  • Gough DV, Juhl AT, Braun PV. Programming structure into 3D nanomaterials. Mater Today. 2009;12:28–35.10.1016/S1369-7021(09)70178-6
  • Kitaev V, Ozin GA. Self-assembled surface patterns of binary colloidal crystals. Adv Mater. 2003;15:75–78.10.1002/(ISSN)1521-4095
  • Aguirre CI, Reguera E, Stein A. Tunable colors in opals and inverse opal photonic crystals. Adv Funct Mater. 2010;20:2565–2578.10.1002/adfm.201000143
  • Armstrong E, Khunsin W, Osiak M, et al. Ordered 2D colloidal photonic crystals on gold substrates by surfactant-assisted fast-rate dip coating. Small. 2014;10:1895–1901.10.1002/smll.201303616
  • von Freymann G, Kitaev V, Lotsch BV, et al. Bottom-up assembly of photonic crystals. Chem Soc Rev. 2013;42:2528–2554.10.1039/C2CS35309A
  • Esmanski A, Ozin GA. Silicon inverse-opal-based macroporous materials as negative electrodes for Lithium ion batteries. Adv Funct Mater. 2009;19:1999–2010.10.1002/adfm.v19:12
  • Ergang NS, Lytle JC, Lee KT, et al. Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system. Adv Mater. 2006;18:1750–1753.10.1002/(ISSN)1521-4095
  • Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for Lithium-ion batteries. Nature. 2000;407:496–499.
  • Malini R, Uma U, Sheela T, et al. Conversion reactions: a new pathway to realise energy in Lithium-ion battery—review. Ionics. 2008;15:301–307.
  • Lee HS, Kubrin R, Zierold R, et al. Photonic properties of titania inverse opal heterostructures. Opt Mater Express. 2013;3:1007–1019.10.1364/OME.3.001007
  • Bennett HS, Andres H, Pellegrino J, et al. Priorities for standards and measurements to accelerate innovations in nano-electrotechnologies: analysis of the NIST-energetics-IEC TC 113 survey. J Res Natl Inst Stand: Technol. 2009;114:99–135.10.6028/jres
  • McDowell MT, Lee SW, Nix WD, et al. Understanding the lithiation of silicon and other alloying anodes for Lithium-ion batteries. Adv Mater. 2013;25:4966–4985.10.1002/adma.201301795
  • Liu XH, Zhang LQ, Zhong L, et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Letters. 2011;11:2251–2258.10.1021/nl200412p
  • Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458:190–193.10.1038/nature07853
  • McSweeney W, Lotty O, Glynn C, et al. The influence of carrier density and doping type on Lithium insertion and extraction processes at silicon surfaces. Electrochim Acta. 2014;135:356–367.10.1016/j.electacta.2014.05.035
  • Collins G, Schmidt M, O’Dwyer C, et al. Enhanced catalytic activity of high-index faceted palladium nanoparticles in suzuki–miyaura coupling due to efficient leaching mechanism. ACS Catal. 2014;4:3105–3111.10.1021/cs5008014
  • Collins G, Schmidt M, O’Dwyer C, et al. The origin of shape-sensitivity in Pd catalyzed suzuki-miyaura cross coupling reactions. Angew Chem Int Ed. 2014;53:4142–4145.10.1002/anie.201400483
  • Valenzuela CD, Carriedo GA, Valenzuela ML, et al. Solid state pathways to complex shape evolution and tunable porosity during metallic crystal growth. Sci Rep. 2013;3:2642.
  • Gu M, Wang Z, Connell JG, et al. Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano. 2013;7:6303–6309.10.1021/nn402349j
  • Long BR, Chan MKY, Greeley JP, et al. Dopant modulated Li insertion in Si for battery anodes: theory and experiment. J Phys Chem C. 2011;115:18916–18921.10.1021/jp2060602
  • Wang JW, He Y, Fan F, et al. Two-phase electrochemical lithiation in amorphous silicon. Nano Letters. 2013;13:709–715.10.1021/nl304379k
  • Yang H, Huang S, Huang X, et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012;12:1953–1958.10.1021/nl204437t
  • Romanov SG, Bardosova M, Povey IM, et al. Understanding of transmission in the range of high-order photonic bands in thin opal film. Appl Phys. Lett. 2008;92:191106.10.1063/1.2920443
  • Joannopoulos JD, Johnson SG, Winn JN, MeadeRD. Photonic crystals molding the flow of light. Princeton (NJ): Princeton University Press; 2008.
  • Arsenault AC, Puzzo DP, Manners I, et al. Photonic-crystal full-colour displays. Nat Photonics. 2007;1:468–472.10.1038/nphoton.2007.140
  • Blanford CF, Schroden RC, Al-Daous M, et al. Tuning solvent-dependent color changes of three-dimensionally ordered macroporous (3DOM) materials through compositional and geometric modifications. Adv Mater. 2001;13:26–29.10.1002/(ISSN)1521-4095
  • Kehoe T, Reboud V, Torres CMS. Inline metrology configuration for sub-wavelength diffraction using microscope optics. Microelectron Eng. 2009;86:1036–1039.10.1016/j.mee.2009.01.072
  • Quinn RA, Cui C, Goree J, et al. Structural analysis of a Coulomb lattice in a dusty plasma. Phys Rev E. 1996;53:R2049–R2052.10.1103/PhysRevE.53.R2049
  • Khunsin W, Amann A, Kocher-Oberlehner G, et al. Noise-assisted crystallization of opal films. Adv Funct Mater. 2012;22:1812–1821.10.1002/adfm.201102605
  • Schroden RC, Al-Daous M, Blanford CF, et al. Optical properties of inverse opal photonic crystals. Chem Mater. 2002;14:3305–3315.10.1021/cm020100z
  • Hatton B, Mishchenko L, Davis S, et al. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc Natl Acad Sci USA. 2010;107:10354–10359.10.1073/pnas.1000954107
  • Armstrong E, Khunsin W, Osiak M, et al. Ordered 2D colloidal photonic crystals on gold substrates by surfactant-assisted fast-rate dip coating. Small. 2014;10:1895–1901.10.1002/smll.201303616
  • Gaylor TK, Moharam MG. Planar dielectric grating diffraction theories. Appl Phys B. 1982;28:1–14.10.1007/BF00693885