3,068
Views
24
CrossRef citations to date
0
Altmetric
New topics/Others

Photocatalytic activities of coke carbon/g-C3N4 and Bi metal/Bi mixed oxides/g-C3N4 nanohybrids for the degradation of pollutants in wastewater

, , , , &
Pages 659-668 | Received 20 Apr 2016, Accepted 09 Sep 2016, Published online: 12 Oct 2016

References

  • Pelaez M, Nolan NT, Pillai SC, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ. 2012;125:331–349.10.1016/j.apcatb.2012.05.036
  • Sousa MA, Gonçalves C, Vilar VJP, et al. Suspended TiO2-assisted photocatalytic degradation of emerging contaminants in a municipal WWTP effluent using a solar pilot plant with CPCs. Chem Eng J. 2012;198–199:301–309.10.1016/j.cej.2012.05.060
  • Ibhadon A, Fitzpatrick P. Heterogeneous photocatalysis: recent advances and applications. Catalysts. 2013;3:189–218.10.3390/catal3010189
  • Muthulingam S, Lee IH, Uthirakumar P. Highly efficient degradation of dyes by carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photocatalyst and its compatibility on three different commercial dyes under daylight. J Colloid Interface Sci. 2015;455:101–109.10.1016/j.jcis.2015.05.046
  • He J, Sun H, Indrawirawan S, et al. Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics. J Colloid Interface Sci. 2015;456:15–21.10.1016/j.jcis.2015.06.003
  • Wang H, Yuan X, Wu Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl Catal B: Environ. 2015;174–175:445–454.10.1016/j.apcatb.2015.03.037
  • Khan R, Shamshi Hassan M, Uthirakumar P, et al. Facile synthesis of ZnO nanoglobules and its photocatalytic activity in the degradation of methyl orange dye under UV irradiation. Mater Lett. 2015;152:163–165.10.1016/j.matlet.2015.03.109
  • Song Y, Xu H, Yan J, et al. Preparation, characterization and photocatalytic activity of agbr/bivo4 composite photocatalyst. J Nanosci Nanotechnol. 2014;14:6816–6823.10.1166/jnn.2014.8978
  • Phuruangrat A, Yayapao O, Thongtem T, et al. Synthesis and characterization of europium-doped zinc oxide photocatalyst. J Nanomater. 2014;2014:1–9.
  • Lam S-M, Sin J-C, Abdullah AZ, et al. Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin Water Treat. 2012;41:131–169.10.1080/19443994.2012.664698
  • Luo Q, Bao L, Wang D, et al. Preparation and strongly enhanced visible light photocatalytic activity of TiO2 nanoparticles modified by conjugated derivatives of polyisoprene. J Phys Chem C. 2012;116:25806–25815.10.1021/jp308150j
  • Thomas A, Fischer A, Goettmann F, et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J Mater Chem. 2008;18:4893–4908.10.1039/b800274f
  • Liu W, Wang M, Xu C, et al. Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. J Mol Catal A Chem. 2013;368–369:9–15.10.1016/j.molcata.2012.11.007
  • Wang H, Lu J, Wang F, et al. Preparation, characterization and photocatalytic performance of g-C3N4/Bi2WO6 composites for methyl orange degradation. Ceram Int. 2014;40:9077–9086.10.1016/j.ceramint.2014.01.121
  • Katsumata K, Motoyoshi R, Matsushita N, et al. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater. 2013;260:475–482.10.1016/j.jhazmat.2013.05.058
  • Doan AT, Thi XDN, Nguyen PH, et al. Graphitic g-C3N4-WO3 composite: synthesis and photocatalytic properties. Bull Korean Chem Soc. 2014;35:1794–1798.10.5012/bkcs.2014.35.6.1794
  • Yang M, Hu S, Li F, et al. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst. Ceram Int. 2014;40:11963–11969.10.1016/j.ceramint.2014.04.033
  • Wang Y, Di Y, Antonietti M, et al. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater. 2010;22:5119–5121.10.1021/cm1019102
  • Kroke E. Novel group 14 nitrides. Coord Chem Rev. 2004;248:493–532.10.1016/j.ccr.2004.02.001
  • Vinu A. Two-dimensional hexagonally-ordered mesoporous carbon nitrides with tunable pore diameter, surface area and nitrogen content. Adv Funct Mater. 2008;18:816–827.10.1002/(ISSN)1616-3028
  • Ito H, Nozaki T, Saikubo A, et al. Hydrogen-storage characteristics of hydrogenated amorphous carbon nitrides. Thin Solid Films. 2008;516:6575–6579.10.1016/j.tsf.2007.11.030
  • Yang SJ, Cho JH, Oh GH, et al. Easy synthesis of highly nitrogen-enriched graphitic carbon with a high hydrogen storage capacity at room temperature. Carbon. 2009;47:1585–1591.10.1016/j.carbon.2009.02.010
  • Bai XD, Zhong D, Zhang GY, et al. Hydrogen storage in carbon nitride nanobells. Appl Phys Lett. 2001;79:1552–1554.10.1063/1.1402958
  • Li Q, Yang J, Feng D, et al. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Res. 2010;3:632–642.10.1007/s12274-010-0023-7
  • Lee SP. Synthesis and characterization of carbon nitride films for micro humidity sensors. Sensors. 2008;8:1508–1518.10.3390/s8031508
  • Lee SP, Lee JG, Chowdhury S. CMOS humidity sensor system using carbon nitride film as sensing materials. Sensors. 2008;8:2662–2672.10.3390/s8042662
  • Hu S, Ma L, You J, et al. Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl Surf Sci. 2014;311:164–171.10.1016/j.apsusc.2014.05.036
  • Di Noto V, Negro E. Development of nano-electrocatalysts based on carbon nitride supports for the ORR processes in PEM fuel cells. Electrochim Acta. 2010;55:7564–7574.10.1016/j.electacta.2009.11.032
  • Wang Y, Ibad MF, Kosslick H, et al. Synthesis and comparative study of the photocatalytic performance of hierarchically porous polymeric carbon nitrides. Microporous Mesoporous Mater. 2015;211:182–191.10.1016/j.micromeso.2015.02.050
  • Chen X, Tan P, Zhou B, et al. A green and facile strategy for preparation of novel and stable Cr-doped SrTiO3/g-C3N4 hybrid nanocomposites with enhanced visible light photocatalytic activity. J Alloys Compd. 2015;647:456–462.10.1016/j.jallcom.2015.06.056
  • Han Q, Zhao F, Hu C, et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Research. 2015;8:1718–1728.10.1007/s12274-014-0675-9
  • Martín-Ramos P, Martín-Gil J, Dante RC, et al. A simple approach to synthesize g-C3N4 with high visible light photoactivity for hydrogen production. Int J Hydrogen Energ. 2015;40:7273–7281.10.1016/j.ijhydene.2015.04.063
  • Ai B, Duan X, Sun H, et al. Metal-free graphene-carbon nitride hybrids for photodegradation of organic pollutants in water. Catal Today. 2015;258:668–675.
  • Yang M, Hu S, Li F, et al. The influence of preparation method on the photocatalytic performance of g-C3N4/WO3 composite photocatalyst. Ceram Int. 2014;40:11963–11969.10.1016/j.ceramint.2014.04.033
  • Shalom M, Inal S, Fettkenhauer C, et al. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J Am Chem Soc. 2013;135:7118–7121.10.1021/ja402521s
  • Tong H, Ouyang S, Bi Y, et al. Nano-photocatalytic materials: possibilities and challenges. Adv Mater. 2012;24:229–251.10.1002/adma.201102752
  • Hernández-Alonso MD, Fresno F, Suárez S, et al. Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environm Sci. 2009;2:1231–1257.10.1039/b907933e
  • Huang H, Han X, Li X, et al. Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr–BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Inter. 2015;7:482–492.10.1021/am5065409
  • Tian N, Huang H, Liu C, et al. In situ co-pyrolysis fabrication of CeO 2/gC 3 N 4 n–n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties. J Mater Chem A. 2015;3:17120–17129.10.1039/C5TA03669K
  • Huang H, He Y, Lin Z, et al. Two novel Bi-based borate photocatalysts: crystal structure, electronic structure, photoelectrochemical properties, and photocatalytic activity under simulated solar light irradiation. J Phys Chem C. 2013;117:22986–22994.10.1021/jp4084184
  • Sierra U, Álvarez P, Blanco C, et al. New alternatives to graphite for producing graphene materials. Carbon. 2015;93:812–818.10.1016/j.carbon.2015.05.105
  • Li X, Dai Y, Ma Y, et al. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Phys Chem Chem Phys. 2014;16:4230–4235.10.1039/c3cp54592j
  • Tian Y, Chang B, Lu J, et al. Hydrothermal synthesis of graphitic carbon nitride–Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl Mater Inter. 2013;5:7079–7085.10.1021/am4013819
  • Xiong M, Chen L, Yuan Q, et al. Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity. Carbon. 2015;86:217–224.10.1016/j.carbon.2015.01.023
  • Ohno T, Murakami N, Koyanagi T, et al. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (g-C3N4) under visible light. J CO2 Util. 2014;6:17–25.10.1016/j.jcou.2014.02.002
  • Aslam I, Cao C, Tanveer M, et al. The synergistic effect between WO3 and g-C3N4 towards efficient visible-light-driven photocatalytic performance. New J Chem. 2014;38:5462–5469.10.1039/C4NJ01370K
  • Dong F, Zhao Z, Sun Y, et al. An advanced semimetal–organic Bi Spheres–g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environ Sci Technol. 2015;49:12432–12440.10.1021/acs.est.5b03758
  • Ma D, Wu J, Gao M, et al. Fabrication of Z-scheme g-C3N4/RGO/Bi2WO6 photocatalyst with enhanced visible-light photocatalytic activity. Chem Eng J. 2016;290:136–146.10.1016/j.cej.2016.01.031
  • Dante RC, Martín-Ramos P, Navas-Gracia LM, et al. Polymeric carbon nitride nanosheets. J Macromol Sci, Part B. 2013;52:623–631.10.1080/00222348.2012.716336
  • Dante RC, Martín-Ramos P, Sánchez-Arévalo FM, et al. Synthesis of crumpled nanosheets of polymeric carbon nitride from melamine cyanurate. J Solid State Chem. 2013;201:153–163.10.1016/j.jssc.2013.02.016
  • Chamorro-Posada P, Vázquez-Cabo J, Sánchez-Arévalo FM, et al. 2D to 3D transition of polymeric carbon nitride nanosheets. J Solid State Chem. 2014;219:232–241.10.1016/j.jssc.2014.07.036
  • Méndez-Ramos J, Acosta-Mora P, Ruiz-Morales JC, et al. Turning into the blue: materials for enhancing TiO2 photocatalysis by up-conversion photonics. RSC Adv. 2013;3:23028–23034.10.1039/c3ra44342f
  • Niu P, Zhang L, Liu G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater. 2012;22:4763–4770.10.1002/adfm.v22.22
  • Zhang G, Zhang J, Zhang M, et al. Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts. J Mater Chem. 2012;22:8083–8091.10.1039/c2jm00097k
  • Larkin PJ, Makowski MP, Colthup NB, et al. Vibrational analysis of some important group frequencies of melamine derivatives containing methoxymethyl, and carbamate substituents: mechanical coupling of substituent vibrations with triazine ring modes. Vib Spectrosc. 1998;17:53–72.10.1016/S0924-2031(98)00015-0
  • Seifer GB. Cyanuric acid and cyanurates. Russ J Coord Chem. 2002;28:301–324.10.1023/A:1015531315785
  • Lau VW-h, Mesch MB, Duppel V, et al. Low-molecular-weight carbon nitrides for solar hydrogen evolution. J Am Chem Soc. 2015;137:1064–1072.10.1021/ja511802c
  • García-López E, Marcí G, Serpone N, et al. Photoassisted oxidation of the recalcitrant cyanuric acid substrate in aqueous ZnO suspensions. J Phys Chem C. 2007;111:18025–18032.10.1021/jp075359p
  • Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B. 1966;15:627–637.10.1002/(ISSN)1521-3951
  • Morales Escobedo A, Mora Sánchez E, Pal U. Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S. 2007;53:18–22.
  • Kailasam K, Fischer A, Zhang G, et al. Mesoporous carbon nitride-tungsten oxide composites for enhanced photocatalytic hydrogen evolution. ChemSusChem. 2015;8:1404–1410.10.1002/cssc.v8.8
  • Chen W, Liu T-Y, Huang T, et al. In situ fabrication of novel Z-scheme Bi 2 WO 6 quantum dots/gC 3 N 4 ultrathin nanosheets heterostructures with improved photocatalytic activity. Appl Surf Sci. 2015;355:379–387.10.1016/j.apsusc.2015.07.111
  • Li H, Liu J, Hou W, et al. Synthesis and characterization of gC 3 N 4/Bi 2 MoO 6 heterojunctions with enhanced visible light photocatalytic activity. Appl Catal B: Environ. 2014;160:89–97.10.1016/j.apcatb.2014.05.019
  • Yu S, Huang H, Dong F, et al. Synchronously achieving plasmonic Bi metal deposition and I-doping by utilizing BiOIO3 as the self-sacrificing template for high-performance multifunctional applications. ACS Appl Mater Inter. 2015;7:27925–27933.10.1021/acsami.5b09994