1,339
Views
16
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Low doses of TiO2-polyethylene glycol nanoparticles stimulate proliferation of hepatocyte cells

, &
Pages 669-676 | Received 29 Mar 2016, Accepted 19 Sep 2016, Published online: 17 Oct 2016

References

  • Zhang H, Wang C, Chen B, et al. Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int. J. Nanomed. 2012;7:235–242.
  • Etacheri V, Michlits G, Seery MK, et al. A highly efficient TiO2-x C x nano-heterojunction photocatalyst for visible light induced antibacterial applications. ACS Appl. Mater. Interfaces. 2013;5:1663–1672.10.1021/am302676a
  • Tucci P, Porta G, Agostini M, et al. Metabolic effects of TiO2 nanoparticles, a common component of sunscreens and cosmetics, on human keratinocytes Cell Death Dis. 2013;4:e549–559.10.1038/cddis.2013.76
  • Nunzi F, Agrawal S, Selloni A, et al. Structural and electronic properties of photoexcited TiO2 nanoparticles from first principles. J Chem Theory Comput. 2015;11:635–645.10.1021/ct500815x
  • Ba-Abbad MM, Kadhum AAH, Mohamad AB, et al. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int J Electrochem Sci. 2012;7:4871–4888.
  • Macwan DP, Dave PN, Chaturvedi S. A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci. 2011;46:3669–3686.10.1007/s10853-011-5378-y
  • Cheng WY, Deka JR, Chiang YC, et al. One-step, surfactant-free hydrothermal method for syntheses of mesoporous TiO2 nanoparticle aggregates and their applications in high efficiency dye-sensitized solar cells. Chem Mater. 2012;24:3255–3262.
  • Mohan R, Drbohlavova J, Hubalek J. Water-dispersible TiO2 nanoparticles via a biphasic solvothermal reaction method. Nanoscale Res. Lett. 2013;8:503–506.
  • Long TC, Tajuba J, Sama P, et al. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect. 2007;115:1631–1637.10.1289/ehp.10216
  • Koivisto AJ, Mäkinen M, Rossi EM, et al. Aerosol characterization and lung deposition of synthesized TiO2 nanoparticles for murine inhalation studies. J Nanopart Res. 2011;13:2949–2961.10.1007/s11051-010-0186-x
  • Wang J, Zhou G, Chen C, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168:176–185.
  • Chen J, Dong X, Zhao J, et al. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol. 2009;29:330–337.10.1002/jat.v29:4
  • Shukla RK, Sharma V, Pandey AK, et al. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro. 2011;25:231–241.10.1016/j.tiv.2010.11.008
  • El-Said KS, Ali EM, Kanehira K, et al. Effects of toll-like receptors 3 and 4 induced by titanium dioxide nanoparticles in DNA Damage-detecting sensor cells. J. Biosens. Bioelectron. 2013;4:5–9.
  • Shukla RK, Kumar A, Gurbani D, et al. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 2013;7:48–60.10.3109/17435390.2011.629747
  • L’Azou B, Jorly J, On D, et al. In vitro effects of nanoparticles on renal cells. Particle and fibre toxicology. Part Fibre. Toxicol. 2008;5:22–35.10.1186/1743-8977-5-22
  • Okuda-Shimazaki J, Takaku S, Kanehira K, et al. Effects of titanium dioxide nanoparticle aggregate size on gene expression. Int J Mol Sci. 2010;11:2383–2392.10.3390/ijms11062383
  • Liu X, Ren X, Deng X, et al. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials. 2010;31:3063–3070.
  • Yamaguchi S, Kobayashi H, Narita T, et al. Sonodynamic therapy using water-dispersed TiO2-polyethylene glycol compound on glioma cells: comparison of cytotoxic mechanism with photodynamic therapy. Ultrason. Sonochem. 2011;18:1197–1204.10.1016/j.ultsonch.2010.12.017
  • Monteiro-Riviere NA, Inman AO, Zhang LW, et al. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line[J]. Toxicol Appl Pharm. 2009;234:222–235.10.1016/j.taap.2008.09.030
  • Matsuda S, Hitsuji A, Nakanishi T, et al. nduction of cell death in mesothelioma cells by magnetite nanoparticles. ACS Biomater Sci Eng. 2015;1:632–638.
  • Dell’Orco D, Lundqvist M, Oslakovic C, et al. Modeling the time evolution of the nanoparticle-protein corona in a body fluid. PLoS ONE. 2010;5:e10949–10956. 10.1371/journal.pone.0010949
  • Garvas M, Testen A, Umek P, et al. Protein corona prevents TiO2 phototoxicity. Plos One. 2015;10:129577–129593.
  • Zhang M, Ferrari M. Reduction of protein adsorption on silicon coated with a self-assembled poly(ethylene glycol) and monomethoxypoly(ethylene glycol). In: Gourley PL, editor. Proceedings SPIE; 1998; San Jose (CA). 3258; p. 15–19. 10.1117/12.304384
  • Di Renzo MF, Olivero M, Ferro S, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene. 1992;7:2549–2553.
  • Natali PG, Nicotra MR, Di Renzo MF, et al. Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br. J. Cancer. 1993;68:746–750.10.1038/bjc.1993.422
  • Marano F, Hussain S, Rodrigues-Lima F, et al. Nanoparticles: molecular targets and cell signalling. Arch Toxicol. 2001;85:733–741.
  • Lynch I, Salvati A, Dawson KA. Protein-nanoparticle interactions: what does the cell see? Nat. Nanotechnol. 2009;4:546–547.10.1038/nnano.2009.248