1,922
Views
17
CrossRef citations to date
0
Altmetric
Energy materials

Instantaneous formation of SiOx nanocomposite for high capacity lithium ion batteries by enhanced disproportionation reaction during plasma spray physical vapor deposition

, &
Pages 744-752 | Received 08 Mar 2016, Accepted 03 Aug 2016, Published online: 09 Nov 2016

References

  • Graetz J, Ahn CC, Yazami R, et al. Highly reversible lithium storage in nanostructured silicon. Electrochem Solid-State Lett. 2003;6:A194–A197.10.1149/1.1596917
  • Kasavajjula U, Wang C, Appleby AJ. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources. 2007;163:1003–1039.10.1016/j.jpowsour.2006.09.084
  • Zhao K, Pharr M, Classak JJ, et al. Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys. 2010;108:073517.10.1063/1.3492617
  • Liu XH, Zhong L, Huang S, et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano. 2012;6:1522–1531.10.1021/nn204476h
  • Yoshio M, Wang H, Fukuda K, et al. Carbon-coated Si as a lithium-ion battery anode material. J Electrochem Soc. 2002;149:A1598–A1603.10.1149/1.1518988
  • Ng SH, Wang J, Wexler D, et al. Amorphous carbon-coated silicon nanoparticles: a low-temperature synthesis via spray pyrolysis and their application as high-capacity anodes for lithium-ion batteries. J Phys Chem. 2007;C111:11131–11138.
  • Chan CK, Peng H, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol. 2008;3:31–35.10.1038/nnano.2007.411
  • Liu N, Lu Z, Zhao J, et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol. 2014;9:187–192.10.1038/nnano.2014.6
  • Wu H, Chan G, Choi JW, et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol. 2012;7:310–315.10.1038/nnano.2012.35
  • Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater. 2010;9:353–358.10.1038/nmat2725
  • Miyachi M, Yamamoto H, Kawai H, et al. Analysis of SiO anodes for lithium-ion batteries. J Electrochem Soc. 2005;152:A2089–A2091.10.1149/1.2013210
  • Morita T, Takami N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries. J Electrochem Soc. 2006;153:A425–A430.10.1149/1.2142295
  • Park CM, Choi W, Hwa Y, et al. Characterizations and electrochemical behaviors of disproportionated SiO and its composite for rechargeable Li-ion batteries. J Mater Chem. 2010;20:4854–4860.10.1039/b923926j
  • Mamiya M, Takei H, Kikuchi M, et al. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction. J Cryst Growth. 2001;229:457–461.10.1016/S0022-0248(01)01202-7
  • Doh CH, Shin HM, Kim DH, et al. Improved anode performance of thermally treated SiO/C composite with an organic solution mixture. Electrochem Comm. 2008;10:233–237.10.1016/j.elecom.2007.11.034
  • Kim JH, Sohn HJ, Kim H, et al. Enhance cycle performance of SiO-C composite anode for lithium-ion batteries. J Power Sources. 2007;170:456–459.10.1016/j.jpowsour.2007.03.081
  • Kim JH, Park CM, Kim H, et al. Electrochemical behavior of SiO anode for Li secondary batteries. J Electroanal Chem. 2011;661:245–249.10.1016/j.jelechem.2011.08.010
  • Kim T, Park S, Oh SM. Solid-state NMR and electrochemical dilatometry study on Li+ uptake/extraction mechanism in SiO electrode. J Electrochem Soc. 2007;154:A1112–A1117.10.1149/1.2790282
  • Wang J, Zhao H, He J, et al. Nano-sized SiOx/C composite anode for lithium ion batteries. J Power Sources. 2011;196:4811–4815.10.1016/j.jpowsour.2011.01.053
  • Al-Maghrabi MA, Suzuki J, Sanderson RJ, et al. Combinatorial studies of Si1-xOx as a potential negative electrode material for Li-ion battery applications. J Electrochem Soc. 2013;160:A1587–A1593.10.1149/2.115309jes
  • Park E, Yoo H, Lee J, Park MS, et al. Dual-size silicon nanocystal-embedded SiOx nanocomposite as a high capacity lithium storage material. ACS Nano. 2015;9:7690–7696.10.1021/acsnano.5b03166
  • Wang J, Wang XF, Li Q, et al. The microstructure of SiO thin films: from nanoclusters to nanocrystals. Philos Mag. 2007;87:11–27.10.1080/14786430600863047
  • Baranchugov V, Markevich E, Pollak E, et al. Amorphous silicon thin films as a high capacity anodes for Li-ion batteries in ionic liquid electrolytes. Electrochem Comm. 2007;9:796–800.10.1016/j.elecom.2006.11.014
  • Bourderau S, Brousse T, Schleich DM. Amorphous silicon as a possible anode material for Li-ion batteries. J Power Sources. 1999;81–82:233–236.10.1016/S0378-7753(99)00194-9
  • Maranchi JP, Hepp AF, Kumta PN. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem Solid-State Lett. 2003;6:A198–A201.10.1149/1.1596918
  • Elliott JF, Gleiser M. Thermochemistry for Steelmaking. Reading (MA): Addison-Wesley; 1960.
  • Homma K, Kambara M, Yoshida T. High throughput production of nanocomposite SiOx powders by plasma spray physical vapor deposition for negative electrode of lithium ion batteries. Sci Technol Adv Mater. 2014;15:025006.10.1088/1468-6996/15/2/025006
  • Yoshida T, Tani T, Nishimura H, et al. Characterization of a hybrid plasma and its application to a chemical synthesis. J Appl Phys. 1983;54:640–646.10.1063/1.332070
  • Huang H, Eguchi K, Kambara M, et al. Ultrafast thermal plasma physical vapor deposition of yttria-stabilized zirconia for novel thermal barrier coatings. J Thermal Spray Technol. 2006;15:83–91.10.1361/105996306X92640
  • Kambara M, Kitayama A, Homma K, et al. Nano-composite Si particle formation by plasma spraying for negative electrode of Li ion batteries. J Appl Phys. 2014;115:143302.10.1063/1.4870600
  • Kambara M, Hideshima T, Kaga M, et al. Plasma Spray PVD: High throughput production of powders. Encyclopedia of Plasma Technol. In press.
  • Girshick SL, Chiu CP, McMurry PH. Modelling particle formation and growth in a plasma synthesis reactor. Plasma Chem Plasma Process. 1988;8:145–157.10.1007/BF01016154
  • Abraham FF. Homogeneous nucleation theory. New York (NY): Academic Press; 1974.
  • Lothe J, Pound GM. Reconsiderations of nucleation theory. J Chem Phys. 1962;36:2080–2085.10.1063/1.1732832
  • Ferguson FT, Nuth III JA. Vapor pressure of silicon monoxide. J Chem Eng Data. 2008;53:2824–2832.10.1021/je800560b
  • Hale BN, Kemper P, Nuth JA. Analysis of experimental nucleation data for silver and SiO using scaled nucleation theory. J Chem Phys. 1989;91:4314–4317.10.1063/1.456812
  • Schnurre SM, Gröbner J, Schmid-Fetzer R. Thermodynamics and phase stability in the Si-O system. J Non-Cryst Solids. 2004;336:1–25.10.1016/j.jnoncrysol.2003.12.057
  • Girshick SL, Chiu CP, McMurry PH. Time-dependent aerosol models and homogeneous nucleation rates. Aerosol Sci Technol. 1990;13:465–477.10.1080/02786829008959461
  • Shigeta M, Watanabe T. Growth model of binary alloy nanopowders for thermal plasma synthesis. J Appl Phys. 2010;108:043306.10.1063/1.3464228
  • Ulrich GD. Theory of particle formation and growth in oxide synthesis flames. Comb Sci Technol. 1971;4:47–57.10.1080/00102207108952471
  • Ke W, Feng X, Huang Y. Annealing effects on the size of Si-nanocrystals embedded in bulk SiO. J Cryst Growth. 2011;316:191–195.10.1016/j.jcrysgro.2010.12.073
  • Nesbit LA. Annealing characteristics of Si-rich SiO2 films. Appl Phys Lett. 1985;46:38–40.10.1063/1.95842
  • Burke JE, Turnbull D. Recrystallization and grain growth. Prog Metall Phys. 1952;3:220–292.10.1016/0502-8205(52)90009-9