2,702
Views
49
CrossRef citations to date
0
Altmetric
Organic and soft materials (colloids, liquid crystals, gel, polymers)

Recyclable nanoscale zero-valent iron-based magnetic polydopamine coated nanomaterials for the adsorption and removal of phenanthrene and anthracene

, , &
Pages 3-16 | Received 26 May 2016, Accepted 07 Oct 2016, Published online: 06 Jan 2017

References

  • Rubio-Clemente A, Torres-Palma RA, Peñuela GA. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review. Sci Total Environ. 2014;478:201–225.10.1016/j.scitotenv.2013.12.126
  • Lau EV, Gan SY, Ng HK, et al. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environ Pollut. 2014;184:640–649.10.1016/j.envpol.2013.09.010
  • Araújo RS, Azevedo DCS, Cavalcante CL Jr, et al. Adsorption of polycyclic aromatic hydrocarbons (PAHs) from isooctane solutions by mesoporous molecular sieves: influence of the surface acidity. Micropor Mesopor Mat. 2008;108:213–222.10.1016/j.micromeso.2007.04.005
  • Torabian A, Panahi HA, Hendi G, et al. Synthesis, modification and graft polymerization of magnetic nano particles for PAH removal in contaminated water. IRAN J Environ Healt. 2014;12:1077–1089.
  • Gan S, Lau EV, Ng HK. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater. 2009;172:532–549.10.1016/j.jhazmat.2009.07.118
  • El Khames Saad Mouhamed, Khiari R, Elaloui E, et al. Adsorption of anthracene using activated carbon and Posidonia oceanica. Arabian J Chem. 2014;7:109–113.10.1016/j.arabjc.2013.11.002
  • Yuan M, Tong S, Zhao S, et al. Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J Hazard Mater. 2010;181:1115–1120.10.1016/j.jhazmat.2010.05.130
  • Zhang S, Shao T, Bekaroglu SSK, et al. Adsorption of synthetic organic chemicals by carbon nanotubes: effects of background solution chemistry. Water Res. 2010;44:2067–2074.10.1016/j.watres.2009.12.017
  • Zhang L, Luo L, Zhang S. Adsorption of phenanthrene and 1,3-dinitrobenzene on cation-modified clay minerals. Colloids Surf A. 2011;377:278–283.10.1016/j.colsurfa.2011.01.017
  • Wang J, Chen Z, Chen B. Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environ Sci Technol. 2014;48:4817–4825.10.1021/es405227u
  • Zhao J, Wang Z, Zhao Q, et al. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environ Sci Technol. 2013;48:331–339.
  • Wang W, Ma R, Wu Q, et al. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J Chromatogr A. 2013;1293:20–27.
  • Yang K, Zhu L, Xing B. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environ Sci Technol. 2006;40:1855–1861.10.1021/es052208w
  • Morimoto Y, Horie M, Kobayashi N, et al. Inhalation toxicity assessment of carbon-based nanoparticles. Acc Chem Res. 2012;46:770–781.
  • Ghasemi JB, Zolfonoun E. Simultaneous spectrophotometric determination of trace amount of polycyclic aromatic hydrocarbons in water samples after magnetic solid-phase extraction by using projection pursuit regression. Environ Monit Assess. 2013;185:2297–2305.10.1007/s10661-012-2709-7
  • Huang Y, Keller AA. Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustain Chem Eng. 2013;1:731–736.
  • Yan L, Kong L, Qu Z, et al. Magnetic biochar decorated with zns nanocrytals for Pb(II) removal. ACS Sustain Chem Eng. 2014;3:125–132.
  • Wang W, Ma R, Wu Q, et al. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography-fluorescence analysis. J Chromatogr A. 2013;1293:20–27.
  • Luo S, Qin P, Shao J, et al. Synthesis of reactive nanoscale zero valent iron using rectorite supports and its application for orange II removal. Chem Eng J. 2013;223:1–7.10.1016/j.cej.2012.10.088
  • Perini JADL, Silva BF, Nogueira RFP. Zero-valent iron mediated degradation of ciprofloxacin – assessment of adsorption, operational parameters and degradation products. Chemosphere. 2014;117:345–352.10.1016/j.chemosphere.2014.07.071
  • Zhu H, Jia Y, Wu X, et al. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater. 2009;172:1591–1596.10.1016/j.jhazmat.2009.08.031
  • Kohara K, Yamamoto S, Seinberg L, et al. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications. Chem Commun. 2013;49:2563–2565.10.1039/c3cc39055a
  • Huber DL. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501.10.1002/(ISSN)1613-6829
  • Guo J, Wang RY, Tjiu WW, et al. Synthesis of Fe nanoparticles@graphene composites for environmental applications. J Hazard Mater. 2012;225-226:63–73.10.1016/j.jhazmat.2012.04.065
  • Motamedi E, Talebi Atouei MT, Kassaee MZ. Comparison of nitrate removal from water via graphene oxide coated Fe, Ni and Co nanoparticles. Mater Res Bull. 2014;54:34–40.10.1016/j.materresbull.2014.02.019
  • Zheng Q, Lin T, Wu H, et al. Mussel-inspired polydopamine coated mesoporous silica nanoparticles as pH-sensitive nanocarriers for controlled release. Int J Pharm. 2014;463:22–26.10.1016/j.ijpharm.2013.12.045
  • Kim Bong Hoon, Lee DH, Kim JY, et al. Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. Adv. Mater. 2011;23:5618–5622.10.1002/adma.v23.47
  • Lee H, Dellatore SM, Miller WM, et al. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–430.10.1126/science.1147241
  • Yan J, Huang Y, Miao YE, et al. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability. J Hazard Mater. 2015;283:730–739.10.1016/j.jhazmat.2014.10.040
  • Wang Y, Wang S, Niu H, et al. Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A. 2013;1283:20–26.
  • Ma YR, Zhang XL, Zeng T, et al. Polydopamine-coated magnetic nanoparticles for enrichment and direct detection of small molecule pollutants coupled with maldi-tof-ms. ACS Appl Mater Interfaces. 2013;5:1024–1030.10.1021/am3027025
  • Woo H, Park J, Lee S, et al. Effects of washing solution and drying condition on reactivity of nano-scale zero valent irons (nZVIs) synthesized by borohydride reduction. Chemosphere. 2014;97:146–152.10.1016/j.chemosphere.2013.11.010
  • Cheng Y, Tan R, Wang W, et al. Controllable synthesis and magnetic properties of Fe3O4 and Fe3O4@SiO2 microspheres. J Mater Sci. 2010;45:5347–5352.10.1007/s10853-010-4583-4
  • Cai SS, Syage JA, Hanold KA, et al. Ultra performance liquid chromatography−atmospheric pressure photoionization-tandem mass spectrometry for high-sensitivity and high-throughput analysis of U.S. environmental protection agency 16 priority pollutants polynuclear aromatic hydrocarbons. Anal Chem. 2009;81:2123–2128.10.1021/ac802275e
  • Wang Z, Zhao J, Song L, et al. Adsorption and desorption of phenanthrene on carbon nanotubes in simulated gastrointestinal fluids. Environ Sci Technol. 2011;45:6018–6024.10.1021/es200790x
  • Liu JJ, Wang XC, Fan B. Characteristics of PAHs adsorption on inorganic particles and activated sludge in domestic wastewater treatment. Bioresour Technol. 2011;102:5305–5311.10.1016/j.biortech.2010.12.063
  • Walters RW, Luthy RG. Equilibrium adsorption of polycyclic aromatic hydrocarbons from water onto activated carbon. Environ Sci Technol. 1984;18:395–403.10.1021/es00124a002
  • Li Y, Jin Z, Li T, et al. One-step synthesis and characterization of core–shell Fe@SiO2 nanocomposite for Cr(VI) reduction. Sci Total Environ. 2012;421-422:260–266.10.1016/j.scitotenv.2012.01.010
  • Zhou QX, Zheng ZW, Xiao JP, et al. Determination of phthalate esters at trace level from environmental water samples by magnetic solid-phase extraction with Fe@SiO2@polyethyleneimine magnetic nanoparticles as adsorbent prior to high-performance liquid chromatography. Anal Bioanal Chem. 2016;408:5211–5220.10.1007/s00216-016-9613-x
  • Boparai HK, Joseph M, O’Carroll DM. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zero-valent iron particles. J Hazard Mater. 2011;186:458–465.10.1016/j.jhazmat.2010.11.029
  • Kumar R, Ansari MO, Barakat MA. DBSA doped polyaniline/multi-walled carbon nanotubes composite for high efficiency removal of Cr(VI) from aqueous solution. Chem Eng J. 2013;228:748–755.10.1016/j.cej.2013.05.024
  • Debnath S, Ballav N, Maity A, et al. Single stage batch adsorber design for efficient Eosin yellow removal by polyaniline coated ligno-cellulose. Int J Biol Macromol. 2015;72:732–739.10.1016/j.ijbiomac.2014.09.018
  • Febrianto J, Kosasih AN, Sunarso J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater. 2009;162:616–645.10.1016/j.jhazmat.2008.06.042
  • Yu F, Wu Y, Ma J, et al. Adsorption of lead on multi-walled carbon nanotubes with different outer diameters and oxygen contents: Kinetics, isotherms and thermodynamics. J Environ Sci. 2013;25:195–203.10.1016/S1001-0742(12)60023-0
  • Lunge S, Singh S, Sinha A. Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. J Magn Magn Mater. 2014;356:21–31.10.1016/j.jmmm.2013.12.008
  • Karthik R, Meenakshi S. Removal of hexavalent chromium ions using polyaniline/silica gel composite. J Water Process Engineer. 2014;1:37–45.10.1016/j.jwpe.2014.03.001
  • Yu XY, Luo T, Zhang YX, et al. Adsorption of lead (II) on O2-plasma-oxidized multiwalled carbon nanotubes: thermodynamics, kinetics, and desorption. ACS Appl Mater Interfaces. 2011;3:2585–2593.10.1021/am2004202
  • Zhang Y, Cheng Y, Chen N, et al. Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide–magnetic nanoparticles: Adsorption and desorption. J Colloid Interface Sci. 2014;421:85–92.10.1016/j.jcis.2014.01.022
  • Giasuddin AB, Kanel SR, Choi H. Adsorption of humic acid onto nanoscale zero-valent iron and its effect on arsenic removal. Environ Sci Technol. 2007;41:2022–2027.10.1021/es0616534
  • Lu An-Hui, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46:1222–1244.10.1002/(ISSN)1521-3773
  • Kanel SR, Grenèche JM, Choi H. Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol. 2006;40:2045–2050.10.1021/es0520924
  • Sun YP, Li XQ, Cao J, et al. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci. 2006;120:47–56.10.1016/j.cis.2006.03.001
  • Pang Y, Zeng G, Tang L, et al. PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination. 2011;281:278–284.10.1016/j.desal.2011.08.001
  • Karamani AA, Douvalis AP, Stalikas CD. Zero-valent iron/iron oxide-oxyhydroxide/graphene as a magnetic sorbent for the enrichment of polychlorinated biphenyls, polyaromatic hydrocarbons and phthalates prior to gas chromatography-mass spectrometry. J Chromatogr A. 2013;1271:1–9.10.1016/j.chroma.2012.11.018
  • Zhang XL, Niu HY, Li WH, et al. A core-shell magnetic mesoporous silica sorbent for organic targets with high extraction performance and anti-interference ability. Chem Commun. 2011;47:4454–4456.10.1039/c1cc10300h
  • Pan S, Zhang Y, Shen H, et al. An intensive study on the magnetic effect of mercapto-functionalized nano-magnetic Fe3O4 polymers and their adsorption mechanism for the removal of Hg(II) from aqueous solution. Chem Eng J. 2012;210:564–574.10.1016/j.cej.2012.09.016
  • Tartaj P, Serna CJ. Synthesis of monodisperse superparamagnetic Fe/Silica nanospherical composites. J Am Chem Soc. 2003;125:15754–15755.10.1021/ja0380594
  • Zhou Q, Fang Z. TiO2 nanotube arrays prepared by anodization as an adsorbent in micro-solid-phase extraction to preconcentrate and determine nitrogen-containing polycyclic aromatic hydrocarbons in water samples. J Sep Sci. 2014;37:1012–1017.10.1002/jssc.v37.8
  • Pan B, Xing B. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol. 2008;42:9005–9013.10.1021/es801777n