3,500
Views
21
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

Simplified detection of the hybridized DNA using a graphene field effect transistor

, , &
Pages 43-50 | Received 01 Mar 2016, Accepted 24 Oct 2016, Published online: 10 Jan 2017

References

  • Zhan B, Li C, Yang J, et al. Graphene field-effect transistor and its application for electronic sensing. Small. 2014;10:4042–4065.
  • Lu CH, Yang HH, Zhu CL, et al. A graphene platform for sensing biomolecules. Angew Chem. 2009;48:4785–4787.10.1002/anie.v48:26
  • Mohanty N, Berry V. Graphene-based single-bacterium resolution biodevice and DNA transistor: interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008;8:4469–4476.10.1021/nl802412n
  • Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chem Soc Rev. 2010;39:3157–3180.10.1039/b923596e
  • Liu Y, Dong X, Chen P. Biological and chemical sensors based on graphene materials. Chem Soc Rev. 2012;41:2283–2307.10.1039/C1CS15270J
  • Nguyen LH, Nguyen TD, Tran VH, et al. Functionalization of reduced graphene oxide by electroactive polymer for biosensing applications. Adv Nat Sci: Nanosci Nanotechnol. 2014;5:035005.
  • Nguyen P, Berry V. Graphene interfaced with biological cells: opportunities and challenges. J Phys Chem Lett. 2012;3:1024–1029.10.1021/jz300033g
  • Dubuisson E, Yang Z, Loh KP. Optimizing label-free DNA electrical detection on graphene platform. Anal Chem. 2011;83:2452–2460.10.1021/ac102431d
  • Fu D, Li LJ. Label-free electrical detection of DNA hybridization using carbon nanotubes and graphene. Nano Reviews. 2010;1:5354.
  • Mohan HKSV, An J, Zhang Y, et al. Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization. Beilstein J Nanotechnol. 2014;5:2081–2091.10.3762/bjnano.5.217
  • Ohno Y, Maehashi K, Matsumoto K. Label-free biosensors based on aptamer-modified graphene field-effect transistors. J Am Chem Soc. 2010;132:18012–18013.10.1021/ja108127r
  • Xu G, Abbott J, Qin L, et al. Electrophoretic and field-effect graphene for all-electrical DNA array technology. Nat Commun. 2014;5:4866.10.1038/ncomms5866
  • Ohno Y, Okamoto S, Maehashi K, et al. Direct electrical detection of DNA hybridization based on electrolyte-gated graphene fieldeffect transistor. Jpn J Appl Phys. 2013;52:110107.10.7567/JJAP.52.110107
  • Cohen-Karni T, Qing Q, Li Q, et al. Graphene and nanowire transistors for cellular interfaces and electrical recording. Nano Lett. 2010;10:1098–1102.10.1021/nl1002608
  • Dontschuk N, Stacey A, Tadich A, et al. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat Commun. 2015;6:6563.10.1038/ncomms7563
  • Zhang Z, Xu H, Zhong H, et al. Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage measurements. Appl Phys Lett. 2012;101:213103.10.1063/1.4768690
  • Das A, Pisana S, Chakrabotry B, et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol. 2008;3:210–215.10.1038/nnano.2008.67
  • Maehashi K, Sofue Y, Okamoto S, et al. Selective ion sensors based on ionophore-modified graphene field-effect transistors. Sensor Actuat B-Chem. 2013;187:45–49.10.1016/j.snb.2012.09.033
  • Jung H, Park J, Oh I-K, et al. Fabrication of transferable Al2O3 nanosheet by atomic layer deposition for graphene FET. ACS Appl Mater Interfaces. 2014;6:2764–2769.10.1021/am4052987
  • Hess LH, Lyuleeva A, Blaschke BM, et al. Graphene transistors with multifunctional polymer brushes for biosensing applications. ACS Appl Mater Interfaces. 2014;6:9705–9710.10.1021/am502112x
  • Zhou G, Chang J, Cui S, et al. Real-time, selective detection of Pb(2+) in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Appl Mater Interfaces. 2014;6:19235–19241.10.1021/am505275a
  • Lin CT, Loan PTK, Chen TY, et al. Label-free electrical detection of DNA hybridization on graphene using hall effect measurements: revisiting the sensing mechanism. Adv Funct Mater. 2013;23:2301–2307.10.1002/adfm.201202672
  • Dong X, Shi Y, Huang W, et al. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv Mater. 2010;22:1649–1653.10.1002/adma.200903645
  • Lin J, Teweldebrhan D, Ashraf K, et al. Gating of single-layer graphene with single-stranded deoxyribonucleic acids. Small. 2010;6:1150–1155.10.1002/smll.200902379
  • Green NS, Norton ML. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: a review. Anal Chim Acta. 2015;853:127–142.10.1016/j.aca.2014.10.023
  • Huang Y, Dong X, Shi Y, et al. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale. 2010;2:1485–1488.10.1039/c0nr00142b
  • Matsumoto K, Maehashi K, Ohno Y, et al. Recent advances in functional graphene biosensors. J Phys D: Appl Physics. 2014;47:094005.10.1088/0022-3727/47/9/094005
  • Cernetic N, Wu S, Davies JA, et al. Systematic doping control of CVD graphene transistors with functionalized aromatic self-assembled monolayers. Adv Funct Mater. 2014;24:3464–3470.10.1002/adfm.201303952
  • Abhilash TS, Alba RD, Zhelev N, et al. Transfer printing of CVD graphene FETs on patterned substrates. Nanoscale. 2015;7:14109–14113.10.1039/C5NR03501E
  • Gowtham S, Scheicher RH, Ahuja R, et al. Physisorption of nucleobases on graphene: density-functional calculations. Phys Rev B. 2007;76:033401.10.1103/PhysRevB.76.033401
  • Le D, Kara A, Schroder E, et al. Physisorption of nucleobases on graphene: a comparative van der Waals study. J Phys-Condens Mat. 2012;24:424210.10.1088/0953-8984/24/42/424210
  • Karimi H, Yusof R, Rahmani R, et al. Development of solution-gated graphene transistor model for biosensors. Nanoscale Res Lett. 2014;9:71.10.1186/1556-276X-9-71
  • Lee JH, Choi YK, Kim HJ, et al. Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J Phys Chem C. 2013;117:13435–13441.10.1021/jp402403f
  • Okamoto S, Ohno Y, Maehashi K, et al. Immunosensors based on graphene field-effect transistors fabricated using antigen-binding fragment. Jpn J Appl Phys. 2012;51:06FD08.10.7567/JJAP.51.06FD08
  • Zaifuddin NM, Okamoto S, Ikuta T, et al. pH sensor based on chemical-vapor-deposition-synthesized graphene transistor array. Jpn J Appl Phys. 2013;52:06GK04.10.7567/JJAP.52.06GK04
  • Uesugi E, Goto H, Eguchi R, et al. Electric double-layer capacitance between an ionic liquid and few-layer graphene. Sci Rep. 2013;3:1595.
  • Chung M, Lowe R, Chan YHM, et al. DNA-tethered membranes formed by giant vesicle rupture. J Struct Biol. 2009;168:90–199.