1,087
Views
5
CrossRef citations to date
0
Altmetric
Engineering and Structural materials

Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system

, , , &
Pages 51-59 | Received 04 Aug 2016, Accepted 26 Oct 2016, Published online: 09 Jan 2017

References

  • Priya S, Nahm S, editors. Lead-free piezoelectrics. New York (USA): Springer; 2014.
  • Rödel J, Jo W, Seifert KTP, et al. Perspective on the development of lead-free piezoceramics. J Am Ceram Soc. 2009;92:1153–1177.10.1111/jace.2009.92.issue-6
  • European union directive 2002/95/Ec of the European parliament and of the council of 27 January 2003 on the restriction of the use of certain hazardous substances in electronic equipment (ROHS). Official J EU. 2003;L37:19–23.
  • European union directive 2002/96/Ec of the European parliament and of the council of 27 January 2003 on waste electrical and electronic equipment (WEEE). Official J EU. 2003;L37:24–38.
  • Maurya D, Kumar A, Priya S, et al. Local structure and piezoelectric instability in lead free (1-x)BaTiO3-xA(Cu1/3Nb2/3)O3 (A=Sr, Ca, Ba) solid solutions. RSC Adv. 2014;4:1283–1292.10.1039/C3RA44886J
  • Maurya D, Zhou Y, Priya S, et.al. Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics with giant piezoelectric response. J Mater Chem C. 2013;1:2102–2111.10.1039/c3tc00619k
  • Maurya D, Pramanick A, Priya S, et.al. Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics. Appl Phy Lett. 2012;100:172906.10.1063/1.4709404
  • Maurya D, Ahn C-W, Priya S. Structural and electrical characterization of lead-free (1-x)(Na1/2Bi1/2)TiO3-xBaTiO3 piezoelectric ceramics. In: Nair KM, Priya S, editors. Advances in electroceramic materials II. Hoboken (NJ): John Wiley & Sons, Inc.; 2010. p. 47–54. doi: 10.1002/9780470930915.ch5.
  • Berik P, Benjeddou A. Static experimentations of the piezoceramic d15 shear actuation mechanism for sandwich structures with opposite or same poled patches-assembled core and composite faces. Int J Smart Nano Mater. 2011;2:230–244.
  • Butz A, Klinkel S, Wagner W. A geometrically and materially non-linear piezoelectric three-dimensional-beam finite element formulation including warping effects. Int J Numer Methods Eng. 2008;76:601–635.10.1002/nme.v76:5
  • Berik P, Benjeddou A. Piezoelectric d15 shear response-based torsion actuation mechanism: an experimental benchmark, and its 3D finite element simulation. Int J Smart Nano Mater. 2010;1:224–235.10.1080/19475411.2010.510265
  • Benjeddou A. Assessment of a smart concept for a d15 shear piezoceramic direct torsion actuation. Eur J Comput Mech. 2011;20:103–124.
  • Berik P, Benjeddou A, Krommer M. Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new experimental benchmark. Smart Struct Syst. 2013;12:483–499.10.12989/sss.2013.12.5.483
  • Krommer M, Berik P, Benjeddou A, et al. Piezoelectric d15 shear response-based torsion actuation mechanism: an exact 3D Saint-Venant type solution. Int J Smart Nano Mater. 2012;3:82–102.10.1080/19475411.2011.649807
  • Krommer M, Berik P, Benjeddou A. Exact 3D Saint-Venant type solutions for piezoelectric d15 shear-mode bi-morph and sandwich torsion actuation and sensing problems. Acta Mech. 2013;224:2505–2527.10.1007/s00707-013-0950-y
  • Fan G, Lu W, Wang X. Effects of manganese additive on piezoelectric properties of (Bi1/2Na1/2)TiO3–BaTiO3 ferroelectric ceramics. J Mater Sci. 2007;42:472–476.10.1007/s10853-006-1084-6
  • Maurya D, Zhou Y, Priya S, et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials: supplementary information. Sci Rep. NPG. 2015;5:8595.10.1038/srep08595
  • Zhang S, Lim JB, Lee HJ, et al. Characterization of hard piezoelectric lead-free ceramics. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56:1523–1527.10.1109/TUFFC.2009.1215
  • Bechmann R, Fair IE. IRE standards on piezoelectric crystals: determination of the elastic, piezoelectric, and dielectric constants- the electromechanical coupling factor. Proc IRE IEEE Standard No.178. 1958;46:76–78.
  • Jaffe B, Cook WR, Jaffe H. Piezoelectric ceramics. London and New York: Academic press; 1971; p. 12.
  • IEEE standard on piezoelectricity. In: IEEE Std 176. New York: The Institute of Electrical and Electronics Engineers; 1978.
  • Marutake M. IRE standards on piezoelectric crystals: measurement of piezoelectric ceramics. Proc IRE IEEE Standard No.179. 1961;49:1161–1169.
  • Supplementary material, Enhanced torsional actuation and stress coupling in Mn-modified 0.93(Na0.5Bi0.5TiO3)-0.07BaTiO3 lead-free piezoceramic system.
  • Malakooti MH, Sodano HA. Electromechanical characterization of piezoelectric shear actuators. Proceedings of the ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2013.
  • Hagiwara M, Takahashi S, Hoshina T, et al. Nonlinear shear response in (K, Na)NbO3-based lead-free piezoelectric ceramics. Key Eng Mater. 2010;445:47–50.10.4028/www.scientific.net/KEM.445
  • Li S, Cao W, Cross LE. The extrinsic nature of nonlinear behavior observed in lead zirconate titanate ferroelectric ceramic. J Appl Phys. 1991;69:7219–7224.10.1063/1.347616
  • Hagiwara M, Hoshina T, Takeda H, et al. Nonlinear shear responses of lead zirconate titanate piezoelectric ceramics. Jpn J Appl Phys. 2010;49( 09MD04):1–5.
  • Berlincourt D, Curran D, Jaffe H. Physical acoustics. New York (NY): Academic Press; 1969. 1(A). p. 169–226.
  • Beige H, Schmidt G. Electromechanical resonances for investigating linear and nonlinear properties of dielectrics. Ferroelectrics. 1982;41:39–49.10.1080/00150198208210608
  • Parashar SK, DasGupta A, Wagner U, et al. Non-linear shear vibrations of piezoceramic actuators. Int J Nonlinear Mech. 2005;40:429–443.10.1016/j.ijnonlinmec.2004.05.001
  • Parashar SK, DasGupta, A, Hagedorn P. Investigation of nonlinear shear induced flexural vibrations of piezoceramic actuators. In: Ralph CS, editor. Proceedings of SPIE. smart structures and materials 2004. modeling, signal processing and control. Bellingham. WA: SPIE; 2004; 5383. p. 71–81.10.1117/12.538060
  • Parashar SK, Wagner U, Hagedorn P. A modified timoshenko beam theory for nonlinear shear-induced flexural vibrations of piezoceramic continua. Nonlinear Dyn. 2004;37:181–205.10.1023/B:NODY.0000044678.78930.cb