2,047
Views
21
CrossRef citations to date
0
Altmetric
Focus on advanced nanoprocessing and applications in sensorics

Plasmonic detection of mercury via amalgam formation on surface-immobilized single Au nanorods

, &
Pages 60-67 | Received 18 May 2016, Accepted 04 Nov 2016, Published online: 09 Jan 2017

References

  • Boening DW. Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 2000;40:1335–1351.10.1016/S0045-6535(99)00283-0
  • Hoyle I, Handy RD. Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways. Aquat Toxicol. 2005;72:147–159.
  • Selin NE. Global biogeochemical cycling of mercury: a review. Ann Rev Env Resour. 2009;34:43–63.10.1146/annurev.environ.051308.084314
  • Baughman TA. Elemental mercury spills. Enviro Health Perspect. 2006;114:147–152.10.1289/ehp.7048
  • De Vries W, Römkens PAM, Schütze G. Critical soil concentrations of cadmium, lead, and mercury in view of health effects on humans and animals. Rev Enviro Contam Toxicol Springer New York. 2007;191:91–130.
  • Karunasagar D, Arunachalam J, Gangadharan S. Development of a ‘collect and punch’ cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. J Anal Atom Spectrom. 1998;13:679–682.10.1039/A802132E
  • Yu LP, Yan XP. Flow injection on-line sorption preconcentration coupled with cold vapor atomic fluorescence spectrometry and on-line oxidative elution for the determination of trace mercury in water samples. Atom Spectrosc. 2004;25:145–153.
  • Zhu X, Alexandratos SD. Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the ‘memory effect’. Microchem J. 2007;86:37–41.
  • Percy AJ, Korbas MG, George Graham N., et al. Reversed-phase high-performance liquid chromatographic separation of inorganic mercury and methylmercury driven by their different coordination chemistry towards thiols. J Chromatogr A. 2007;1156:331–339.10.1016/j.chroma.2006.12.061
  • Aragay G, Pons J, Merkoçi A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev. 2011;111:3433–3458.
  • Botasini S, Heijo G, Méndez E. Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies. Anal Chim Acta. 2013;800:1–11.10.1016/j.aca.2013.07.067
  • Lin C-Y, Yu C-J, Lin Y-H, et al. Ultrasensitive sensing of Hg2+ and CH3Hg+ based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters. Anal Chem. 2010;82:6830–6837.
  • Lou T, Chen Z, Wang Y, et al. Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. ACS Appl Mater Interf. 2011;3:1568–1573.10.1021/am200130e
  • Anker JN, Hall WP, Lyandres O, et al. Biosensing with plasmonic nanosensors. Nat Mater. 2008;7:442–453.
  • Chen C-D, Cheng S-F, Chau L-K, et al. Sensing capability of the localized surface plasmon resonance of gold nanorods. Bios Bioelectron. 2007;22:926–932.10.1016/j.bios.2006.03.021
  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–4910.
  • Rex M, Hernandez FE, Campiglia AD. Pushing the limits of mercury sensors with gold nanorods. Anal Chem. 2005;78:445–451.
  • Chemnasiri W, Hernandez FE. 2012 Gold nanorod-based mercury sensor using functionalized glass substrates Sens and Actuat B: Chem. 173 322–328.10.1016/j.snb.2012.07.002
  • Heider EC, Trieu K, Moore AFT, et al. Portable mercury sensor for tap water using surface plasmon resonance of immobilized nanorods. Talanta. 2012;99:180–185.10.1016/j.talanta.2012.05.037
  • Olson J, Dominguez-Medina S, Hoggard A, et al. Optical characterization of single plasmonic nanoparticles. Chem Soc Rev. 2014;44:40–57.
  • Quinten M. Optical properties of nanoparticle systems - Mie and Beyond. Weinheim: Wiley-VCH; 2011.10.1002/9783527633135
  • James JZ, Lucas D, Koshland CP. Elemental mercury vapor interaction with individual gold nanorods. Analyst. 2013;138:2323–2328.10.1039/c3an36841f
  • Alvarez-Puebla RA, Agarwal A, Manna P, et al. Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proc Natl Acad Sci U S A. 2011;108:8157–8161.10.1073/pnas.1016530108
  • Schopf C, Martín A, Schmidt M, et al. Investigation of Au-Hg amalgam formation on substrate-immobilized individual Au nanorods. J Mater Chem C. 2015;3:8865–8872.10.1039/C5TC01800E
  • Link S, Wang ZL, El-Sayed M. Alloy formation of gold−silver nanoparticles and the dependence of the plasmon absorption on their composition. J Phys Chem B. 1999;103:3529–3533.10.1021/jp990387w
  • Murphy CJ, Sau TK, Gole AM, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B. 2005;109:13857–13870.10.1021/jp0516846
  • Henglein A, Giersig M. Optical and chemical observations on gold−mercury nanoparticles in aqueous solution. J Phys Chem B. 2000;104:5056–5060.10.1021/jp993682p
  • Liu M, Guyot-Sionnest P. synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B. 2004;108:5882–5888.10.1021/jp037644o
  • James JZ, Lucas D, Koshland CP. Gold nanoparticle films as sensitive and reusable elemental mercury sensors. Environ Sci Technol. 2012;46:9557–9562.10.1021/es3005656
  • Byers CP, Hoener BS, Chang W-S, et al. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J Phys Chem C. 2014;118:14047–14055.10.1021/jp504454y
  • Vanysek P. In: Lide DR, editor. CRC handbook of chemistry and physics. 84th ed. Vol. 85. Boca Raton, FL: CRC Press; 2004.
  • Kittel C. Introduction to Solid State Physics. 8th ed. Hoboken, NJ; John Wiley & Sons, Inc; 2005.