1,849
Views
24
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Changes in physicochemical and biological properties of porcine bone derived hydroxyapatite induced by the incorporation of fluoride

ORCID Icon, , , &
Pages 110-121 | Received 13 Sep 2016, Accepted 17 Nov 2016, Published online: 01 Feb 2017

References

  • Artzi Z, Kozlovsky A, Nemcovsky CE, et al. The amount of newly formed bone in sinus grafting procedures depends on tissue depth as well as the type and residual amount of the grafted material. J Clin Periodontol. 2005;32:193–199.10.1111/cpe.2005.32.issue-2
  • Jensen SS, Broggini N, Hjorting-Hansen E, et al. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. a histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implant Res. 2006;17:237–243.10.1111/clr.2006.17.issue-3
  • Nguyen NK, Leoni M, Maniglio D, et al. Hydroxyapatite nanorods: soft-template synthesis, characterization and preliminary in vitro tests. J Biomater Appl. 2013;28:49–61.10.1177/0885328212437065
  • Wei M, Evans JH, Bostrom T, et al. Synthesis and characterization of hydroxyapatite, fluoride-substituted hydroxyapatite and fluorapatite. J Mater Sci Mater Med. 2003;14:311–320.10.1023/A:1022975730730
  • Spence G, Patel N, Brooks R, et al. Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response. J Biomed Mater Res A. 2009;90A:217–224.10.1002/jbm.a.v90a:1
  • Okada S, Ito H, Nagai A, et al. Adhesion of osteoblast-like cells on nanostructured hydroxyapatite. Acta Biomater. 2010;6:591–597.10.1016/j.actbio.2009.07.037
  • Akram M, Ahmed R, Shakir I, et al. Extracting hydroxyapatite and its precursors from natural resources. J Mater Sci. 2014;49:1461–1475.10.1007/s10853-013-7864-x
  • Cho JS, Kim HS, Um SH, et al. Preparation of a novel anorganic bovine bone xenograft with enhanced bioactivity and osteoconductivity. J Biomed Mater Res B. 2013;101b:855–869.10.1002/jbm.b.v101b.5
  • Liu Q, Chen ZT, Gu HJ, et al. Preparation and characterization of fluorinated porcine hydroxyapatite. Dent Mater J. 2012;31:742–750.10.4012/dmj.2012-052
  • Kannan S, Rocha JHG, Agathopoulos S, et al. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. Acta Biomater. 2007;3:243–249.10.1016/j.actbio.2006.09.006
  • Pearce AI, Richards RG, Milz S, et al. Animal models for implant biomaterial research in bone: A review. Eur Cell Mater. 2007;13:1–10.
  • Pagliani L, Andersson P, Lanza M, et al. A collagenated porcine bone substitute for augmentation at neoss implant sites: a prospective 1-year multicenter case series study with histology. Clin Implant Dent Relat Res. 2012;14:746–758.10.1111/j.1708-8208.2010.00314.x
  • Guirado JLC, Fernandez MPR, Negri B, et al. Experimental model of bone response to collagenized xenografts of porcine origin (OsteoBiol (R) mp3): a radiological and histomorphometric study. Clin Implant Dent Relat Res. 2013;15:143–151.10.1111/cid.2013.15.issue-1
  • Park SA, Shin JW, Yang YI, et al. In vitro study of osteogenic differentiation of bone marrow stromal cells on heat-treated porcine trabecular bone blocks. Biomaterials. 2004;25:527–535.10.1016/S0142-9612(03)00553-2
  • Kim SH, Shin JW, Park SA, et al. Chemical, structural properties, and osteoconductive effectiveness of bone block derived from porcine cancellous bone. J Biomed Mater Res B Appl Biomater. 2004;68B:69–74.10.1002/(ISSN)1097-4636
  • Becker RO, Spadaro JA, Berg EW. The trace elements of human bone. J Bone Joint Surg Am. 1968;50:326–334.
  • Ren F, Leng Y, Xin R, et al. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 2010;6:2787–2796.10.1016/j.actbio.2009.12.044
  • Landi E, Tampieri A, Celotti G, et al. Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 2007;3:961–969.10.1016/j.actbio.2007.05.006
  • Landi E, Sprio S, Sandri M, et al. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomater. 2008;4:656–663.10.1016/j.actbio.2007.10.010
  • Spence G, Patel N, Brooks R, et al. Carbonate substituted hydroxyapatite: resorption by osteoclasts modifies the osteoblastic response. J Biomed Mater Res A. 2009;90a:217–224.10.1002/jbm.a.v90a:1
  • Shepherd D, Best SM. Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater. 2013;8:025003.
  • Thian ES, Konishi T, Kawanobe Y, et al. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci-Mater M. 2013;24:437–445.10.1007/s10856-012-4817-x
  • Solla EL, González P, Serra J, et al. Pulsed laser deposition of silicon substituted hydroxyapatite coatings from synthetical and biological sources. Appl Surf Sci. 2007;254:1189–1193.10.1016/j.apsusc.2007.09.041
  • Marchat D, Zymelka M, Coelho C, et al. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route. Acta Biomater. 2013;9:6992–7004.10.1016/j.actbio.2013.03.011
  • Murugan R, Sampath Kumar TSS, Panduranga Rao KP. Fluorinated bovine hydroxyapatite: preparation and characterization. Mater Lett. 2002;57:429–433.10.1016/S0167-577X(02)00805-4
  • Hall BK. Sodium-fluoride as an initiator of osteogenesis from embryonic mesenchyme. invitro Bone. 1987;8:111–116.10.1016/8756-3282(87)90079-2
  • Farley JR, Wergedal JE, Baylink DJ. Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science. 1983;222:330–332.10.1126/science.6623079
  • Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008;108:4628–4669.10.1021/cr0782574
  • Okazaki M, Miake Y, Tohda H, et al. Functionally graded fluoridated apatites. Biomaterials. 1999;20:1421–1426.10.1016/S0142-9612(99)00049-6
  • Li ZP, Huang BX, Mai S, et al. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells. Sci Technol Adv Mat. 2015;16:035006.
  • Pan HB, Darvell BW. Solubility of hydroxyapatite by solid titration at pH 3-4. Arch Oral Biol. 2007;52:618–624.10.1016/j.archoralbio.2006.12.007
  • Chen ZF, Darvell BW, Leung VWH. Hydroxyapatite solubility in simple inorganic solutions. Arch Oral Biol. 2004;49:359–367.10.1016/j.archoralbio.2003.12.004
  • Pan HB, Darvell BW. Calcium phosphate solubility: the need for re-evaluation. Cryst Growth Des. 2009;9:639–645.10.1021/cg801118v
  • Liu Q, Chen ZF, Pan HB, et al. The effect of excess phosphate on the solubility of hydroxyapatite. Ceram Int. 2014;40:2751–2761.10.1016/j.ceramint.2013.10.044
  • Chen ZF, Huang BX, Pan HB, et al. Solubility of bovine-derived hydroxyapatite by solid titration, pH 3.5-5. Cryst Growth Des. 2009;9:2816–2820.
  • Landi E, Tampieri A, Celotti G, et al. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–2387.10.1016/S0955-2219(00)00154-0
  • Pan HB, Darvell BW. Solubility of TTCP and beta-TCP by solid titration. Arch Oral Biol. 2009;54:671–677.10.1016/j.archoralbio.2008.01.001
  • Pan HB, Darvell BW. Solubility of dicalcium phosphate dihydrate by solid titration. Caries Res. 2009;43:254–260.10.1159/000217857
  • Leung VWH, Darvell BW. Calcium phosphate system in saliva-like media. J Chem Soc Faraday T. 1991;87:1759–1764.10.1039/ft9918701759
  • Pan HB, Darvell BW. Solubility of calcium fluoride and fluorapatite by solid titration. Arch Oral Biol. 2007;52:861–868.10.1016/j.archoralbio.2007.03.002
  • Kim HM, Rey C, Glimcher MJ. Isolation of calcium-phosphate crystals of bone by nonaqueous methods at low-temperature. J Bone Miner Res. 1995;10:1589–1601.
  • Liu Q, Pan H, Chen Z, Matinlinna JP. Insight into Bone-Derived Biological Apatite: Ultrastructure and Effect of Thermal Treatment. BioMed Research International. 2015;2015:11.
  • Elliott JC. Structure and chemistry of the apatites and other calcium orthophosphates. Amsterdam The Netherlands New York: Elsevier; 1994.
  • Yao F, LeGeros JP, LeGeros RZ. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: effect on crystallographic and physico-chemical properties. Acta Biomater. 2009;5:2169–2177.10.1016/j.actbio.2009.02.007
  • Haberko K, Bućko M, Mozgawa W, et al. Behaviour of bone origin hydroxyapatite at elevated temperatures and in O2 and CO2 atmospheres. Ceram Int. 2009;35:2537–2540.10.1016/j.ceramint.2009.02.008
  • Caverzasio J, Palmer G, Bonjour JP. Fluoride: mode of action. Bone. 1998;22:585–589.10.1016/S8756-3282(98)00058-1
  • Shiwaku Y, Anada T, Yamazaki H, et al. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates. Acta Biomater. 2012;8:4417–4425.10.1016/j.actbio.2012.07.041
  • Zhang HG, Zhu QS. Preparation of fluoride-substituted hydroxyapatite by a molten salt synthesis route. J Mater Sci-Mater M. 2006;17:691–695.10.1007/s10856-006-9679-7
  • Rodrı́guez-Lorenzo LM, Hart JN, Gross KA. Influence of fluorine in the synthesis of apatites. synthesis of solid solutions of hydroxy-fluorapatite. Biomaterials. 2003;24:3777–3785.10.1016/S0142-9612(03)00259-X
  • Wu CC, Huang ST, Tseng TW, et al. FT-IR and XRD investigations on sintered fluoridated hydroxyapatite composites. J Mol Struct. 2010;979:72–76.10.1016/j.molstruc.2010.06.003
  • Bianco A, Cacciotti I, Lombardi M, et al. F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram Int. 2010;36:313–322.10.1016/j.ceramint.2009.09.007
  • Eslami H, Solati-Hashjin M, Tahriri M. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite. Mat Sci Eng C-Bio S. 2009;29:1387–1398.10.1016/j.msec.2008.10.033
  • Aerssens J, Boonen S, Lowet G, et al. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology. 1998;139:663–670.
  • Figueiredo M, Fernando A, Martins G, et al. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone. Ceram Int. 2010;36:2383–2393.10.1016/j.ceramint.2010.07.016
  • Cordell JM, Vogl ML, Wagoner Johnson AJ. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds. J Mech Behav Biomed Mater. 2009;2:560–570.10.1016/j.jmbbm.2009.01.009
  • Hing KA, Annaz B, Saeed S, et al. Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med. 2005;16:467–475.10.1007/s10856-005-6988-1
  • Samavedi S, Whittington AR, Goldstein AS. Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior. Acta Biomater. 2013;9:8037–8045.10.1016/j.actbio.2013.06.014
  • Dulgar-Tulloch AJ, Bizios R, Siegel RW. Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J Biomed Mater Res A. 2009;90A:586–594.10.1002/jbm.a.v90a:2
  • Qu H, Wei M. The effect of fluoride contents in fluoridated hydroxyapatite on osteoblast behavior. Acta Biomater. 2006;2:113–119.10.1016/j.actbio.2005.09.003
  • Anselme K, Ploux L, Ponche A. Cell/material interfaces: influence of surface chemistry and surface topography on cell adhesion. J Adhes Sci Technol. 2010;24:831–852.10.1163/016942409X12598231568186
  • Bengtsson Åsa, Shchukarev A, Persson P, et al. A solubility and surface complexation study of a non-stoichiometric hydroxyapatite. Geochim Cosmochim Ac. 2009;73:257–267.10.1016/j.gca.2008.09.034
  • Moreno EC, Kresak M, Zahradni RT. Fluoridated hydroxyapatite solubility and caries formation. Nature. 1974;247:64–65.10.1038/247064a0
  • Yan G, Moribe K, Otsuka M, et al. Quantitative determination of lattice fluoride effects on the solubility and crystallinity of carbonated apatites with incorporated fluoride. Caries Res. 2013;47:193–202.10.1159/000345080
  • Chen YM, Miao XG. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents. Biomaterials. 2005;26:1205–1210.10.1016/j.biomaterials.2004.04.027