3,577
Views
20
CrossRef citations to date
0
Altmetric
Focus on materials genome and informatics

Quantitative description on structure–property relationships of Li-ion battery materials for high-throughput computations

, , , &
Pages 134-146 | Received 04 Jan 2016, Accepted 26 Dec 2016, Published online: 14 Feb 2017

References

  • Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928.10.1126/science.1212741
  • Goodenough JB, Kim Y. Challenges for rechargeable li batteries. Chem Mater. 2010;22:587.10.1021/cm901452z
  • Palacín MR. Recent advances in rechargeable battery materials: a chemist’s perspective. Chem Soc Rev. 2009;38:2565.10.1039/b820555h
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359.10.1038/35104644
  • Liu J, Zhang JG, Yang ZG, et al. Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater. 2013;23:929.10.1002/adfm.v23.8
  • Hold JP. Materials genome initiative for global competitiveness. Washing DC.: Office of Science and Technology Policy and National Science and Technology Council; 2012.
  • Kraytsberg A, Ein-Eli Y. Higher, stronger, better ... A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater. 2012;2:922.10.1002/aenm.v2.8
  • Jain A, Ong SP, Hautier G, et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.10.1063/1.4812323
  • Meng YS, Arroyo-de Dompablo ME. Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res. 2013;46:1171.10.1021/ar2002396
  • Islam MS, Fisher CAJ. Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev. 2014;43:185.10.1039/C3CS60199D
  • Tang YX, Zhang YY, Li WL, et al. Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev. 2015;44:5926.10.1039/C4CS00442F
  • Kim JC, Seo DH, Chen HL, et al. The effect of antisite disorder and particle size on Li intercalation kinetics in Monoclinic LiMnBO3. Adv Energy Mater. 2015;5.
  • Kim JC, Seo DH, Ceder G. Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder. Energy Environ Sci. 2015;8:1790.10.1039/C5EE00930H
  • Gardiner GR, Islam MS. Anti-site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material. Chem Mater. 2010;22:1242.10.1021/cm902720z
  • Hoang K, Johannes M. Tailoring native defects in LiFePO4: insights from first-principles calculations. Chem Mater. 2011;23:3003.10.1021/cm200725j
  • Malik R, Burch D, Bazant M, et al. Particle size dependence of the ionic diffusivity. Nano Lett. 2010;10:4123.10.1021/nl1023595
  • Chung SY, Kim YM, Lee S, et al. Cation disordering by rapid crystal growth in olivine-phosphate nanocrystals. Nano Lett. 2012;12:3068.10.1021/nl300909h
  • Chung SY, Choi SY, Kim TH, et al. Surface-orientation-dependent distribution of subsurface cation-exchange defects in olivine-phosphate nanocrystals. ACS Nano. 2015;9:850.10.1021/nn506495x
  • Lee S, Park SS. Structure, defect chemistry, and lithium transport pathway of lithium transition metal pyrophosphates (Li2MP2O7, M: Mn, Fe, and Co): atomistic simulation study. Chem Mater. 2012;24:3550.10.1021/cm301921d
  • Boulineau A, Gutel T. Revealing electrochemically induced antisite defects in LiCoPO4: evolution upon cycling. Chem Mater. 2015;27:802.10.1021/cm503716p
  • Kuganathan N, Islam MS. Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chem Mater. 2009;21:5196–5202.10.1021/cm902163k
  • Fisher CAJ, Kuganathan N, Islam MS. Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4. J Mater Chem A. 2013;1:4207.10.1039/c3ta00111c
  • Lee S, Park SS. Atomistic simulation study of mixed-metal oxide (LiNi1/3Co1/3Mn1/3O2) cathode material for lithium ion battery. J Phys Chem C. 2012;116:6484.10.1021/jp2122467
  • Islam MS, Driscoll DJ, Fisher CAJ, et al. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem Mater. 2005;17:5085.10.1021/cm050999v
  • Fisher CAJ, Hart Prieto VMH, Islam MS. Lithium battery materials LiMPO4 (M = Mn, Fe Co, and Ni): insights into defect association, transport mechanisms, and doping behavior. Chem Mater. 2008;20:5907.10.1021/cm801262x
  • Chen JJ, Vacchio MJ, Wang SJ, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ionics. 2008;178:1676.10.1016/j.ssi.2007.10.015
  • Chung SY, Choi SY, Yamamoto T, et al. Atomic-scale visualization of antisite defects in LiFePO(4). Phys Rev Lett. 2008;100:125502.
  • Amin R, Maier J, Balaya P, et al. Ionic and electronic transport in single crystalline LiFePO4 grown by optical floating zone technique. Solid State Ionics. 2008;179:1683.10.1016/j.ssi.2008.01.079
  • Yang SF, Song YN, Zavalij PY, et al. Reactivity, stability and electrochemical behavior of lithium iron phosphates. Electrochem Commun. 2002;4:239.
  • Clark JM, Nishimura S, Yamada A, et al. High-voltage pyrophosphate cathode: insights into local structure and lithium-diffusion pathways. Angew Chem Int Ed. 2012;51:13149.10.1002/anie.201205997
  • Aricò AS, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.10.1038/nmat1368
  • Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4:805.10.1038/nmat1513
  • Fisher CAJ, Islam MS. Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. J Mater Chem. 2008;18:1209.10.1039/b715935h
  • Ferg E, Gummow RJ, Dekock A, et al. Spinel anodes for lithium-ion batteries. J Electrochem Soc. 1994;141:L147.10.1149/1.2059324
  • Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3ti5/3]O-4 for rechargeable lithium cells. J Electrochem Soc. 1995;142:1431.10.1149/1.2048592
  • Scharner S, Weppner W, Schmid-Beurmann P. Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J Electrochem Soc. 1999;146:857.10.1149/1.1391692
  • Ge H, Li N, Li DY, et al. Electrochemical characteristics of spinel Li4Ti5O12 discharged to 0.01 V. Electrochem Commun. 2008;10:719.10.1016/j.elecom.2008.02.026
  • Zhong ZY, Ouyang CY, Shi SQ, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. Chem Phys Chem. 2008;9:2104.10.1002/cphc.v9:14
  • Borghols WJH, Wagemaker M, Lafont U, et al. Size effects in the Li4+xTi5O12 spinel. J Am Chem Soc. 2009;131:17786.10.1021/ja902423e
  • Ganapathy S, Wagemaker M. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano. 2012;6:8702.10.1021/nn302278m
  • Wagemaker M, Simon DR, Kelder EM, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Adv Mater. 2006;18:3169.10.1002/(ISSN)1521-4095
  • Wagemaker M, Mulder FM, Van der Ven A. The role of surface and interface energy on phase stability of nanosized insertion compounds. Adv Mater. 2009;21:2703.10.1002/adma.v21:25/26
  • Wagemaker M, van Eck ERH, Kentgens APM, et al. Li-Ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J Phys Chem B. 2009;113:224.10.1021/jp8073706
  • Wang L, Zhou F, Meng YS, et al. First-principles study of surface properties of LiFePO(4): surface energy, structure, Wulff shape, and surface redox potential. Phys Rev B 2007;76:165435.
  • Liu Y, Liu XH, Nguyen BM, et al. Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale. Nano Lett. 2013;13:4876.10.1021/nl4027549
  • Franger S, Benoit C, Bourbon C, et al. Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries. J Phys Chem Solids. 2006;67:1338.10.1016/j.jpcs.2006.01.066
  • Ellis B, Kan WH, Makahnouk WRM, et al. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem. 2007;17:3248.10.1039/b705443m
  • Chen GY, Song XY, Richardson TJ. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem Solid State Lett. 2006;9:A295.10.1149/1.2192695
  • Jamnik J, Gaberscek M. Li ion migration at the interfaces. MRS Bull. 2009;34:942.10.1557/mrs2009.217
  • Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930.10.1002/(ISSN)1521-3773
  • Yu YS, Kim C, Shapiro DA, et al. Dependence on crystal size of the nanoscale chemical phase distribution and fracture in LixFePO4. Nano Lett. 2015;15:4282.10.1021/acs.nanolett.5b01314
  • Tu XY, Shu KY. X-ray diffraction study on phase transition of orthorhombic LiMnO2 in electrochemical conversions. J Solid State Electrochem. 2008;12:245.10.1007/s10008-007-0384-3
  • Herle PS, Ellis B, Coombs N, et al. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3:147.10.1038/nmat1063
  • Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1:123.10.1038/nmat732
  • Hoang K, Johannes MD. First-principles studies of the effects of impurities on the ionic and electronic conduction in LiFePO4. J Power Sources. 2012;206:274.10.1016/j.jpowsour.2012.01.126
  • Ban CM, Yin WJ, Tang HW, et al. A novel codoping approach for enhancing the performance of LiFePO4 cathodes. Adv Energy Mater. 2012;2:1028.10.1002/aenm.v2.8
  • Milović M, Jugović D, Cvjetićanin N, et al. Crystal structure analysis and first principle investigation of F doping in LiFePO4. J Power Sources. 2013;241:70.10.1016/j.jpowsour.2013.04.109
  • Lu F, Zhou YC, Liu J, et al. Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route. Electrochim Acta. 2011;56:8833.10.1016/j.electacta.2011.07.079
  • Padhi AK, Manivannan V, Goodenough JB. Tuning the position of the redox couples in materials with NASICON structure by anionic substitution. J Electrochem Soc. 1998;145:1518.10.1149/1.1838513
  • Shi SQ, Liu LJ, Ouyang CY, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 2003;68:195108.
  • Shi SQ, Ouyang CY, Wang DS, et al. The effect of cation doping on spinel LiMn2O4: a first-principles investigation. Solid State Commun. 2003;126:531.10.1016/S0038-1098(03)00234-5
  • Shin HC, Park S, Jang H, et al. Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim Acta. 2008;53:7946.10.1016/j.electacta.2008.06.005
  • Ouyang CY, Shi SQ, Wang ZX, et al. The effect of Cr doping on Li ion diffusion in LiFePO4 from first principles investigations and Monte Carlo simulations. J Phys-Condens Mat. 2004;16:2265.10.1088/0953-8984/16/13/007
  • Butt G, Sammes N, Tompsett G, et al. Raman spectroscopy of superionic Ti-doped Li3Fe2(PO4)(3) and LiNiPO4 structures. J Power Sources. 2004;134:72.10.1016/j.jpowsour.2004.01.053
  • Delacourt C, Wurm C, Laffont L, et al. Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites. Solid State Ionics. 2006;177:333.10.1016/j.ssi.2005.11.003
  • Wolfenstine J. Electrical conductivity of doped LiCoPO4. J Power Sources. 2006;158:1431.10.1016/j.jpowsour.2005.10.072
  • Ellis B, Subramanya Herle PS, Rho YH, et al. Nanostructured materials for lithium-ion batteries: surface conductivity vs. bulk ion/electron transport. Faraday Discuss. 2007;134:119.10.1039/B602698B
  • Kang KS, Meng YS, Breger J, et al. Electrodes with high power and high capacity for rechargeable lithium batteries. Science. 2006;311:977.10.1126/science.1122152
  • Bréger J, Meng YS, Hinuma Y, et al. Effect of high voltage on the structure and electrochemistry of LiNi0.5Mn0.5O2: A joint experimental and theoretical study. Chem Mater. 2006;18:4768.10.1021/cm060886r
  • Hinuma Y, Meng YS, Kang KS, et al. Phase transitions in the LiNi0.5Mn0.5O2 system with temperature. Chem Mater. 2007;19:1790.10.1021/cm062903i
  • Armstrong AR, Holzapfel M, Novák P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O-2. J Am Chem Soc. 2006;128:8694.10.1021/ja062027+
  • Deng ZQ, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phy Chem C. 2011;115:7097.10.1021/jp200375d
  • Xu B, Fell CR, Chi MF, et al. Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: a joint experimental and theoretical study. Energy Environ Sci. 2011;4:2223.10.1039/c1ee01131f
  • Li J, Camardese J, Glazier S, et al. Structural and electrochemical study of the Li-Mn-Ni oxide system within the layered single phase region. Chem Mater. 2014;26:7059.10.1021/cm503505b
  • Jiang M, Key B, Meng YS, et al. Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O-2. Chem Mater. 2009;21:2733.10.1021/cm900279u
  • Xiao RJ, Li H, Chen LQ. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Sci Rep. 2015;5:14227.
  • Gauthier M, Carney TJ, Grimaud A, et al. Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights. J Phys Chem Lett. 2015;6:4653.10.1021/acs.jpclett.5b01727
  • Zhu Y, He X, Mo Y. First principles study on electrochemeical and chemical stabilty of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries. J Mater Chem A. 2016;4:3253.10.1039/C5TA08574H
  • Smith GD, Borodin O, Russo SP, et al. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes. Phys Chem Chem Phys. 2009;11:9884.10.1039/b912820d
  • Shi SQ, Lu P, Liu ZY, et al. Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134:15476.10.1021/ja305366r
  • Jain A, Hautier G, Moore C, et al. High-throughput infrastructure for density funcational theory calculations. Comput Mater Sci. 2011;50:2295.10.1016/j.commatsci.2011.02.023
  • Andersson MP, Bligaard T, Kustov A, et al. Toward computational screening in heterogeneous catalysis: pareto-optimal methanation catalysts. J Catal. 2006;239:501.10.1016/j.jcat.2006.02.016
  • Curtarolo S, Setyawan W, Wang S, et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput Mater Sci. 2012;58:227.10.1016/j.commatsci.2012.02.002
  • Setyawan W, Gaume RM, Lam S, et al. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb Sci. 2011;13:382.10.1021/co200012w
  • Fujimura K, Seko A, Koyama Y, et al. Accelerated materials design of lithium superionic conductors based on first-principles calculations and machine learning algorithms. Adv Energy Mater. 2013;3:980.10.1002/aenm.v3.8
  • Hautier G, Jain A, Ong SP, et al. Phosphates as lithium-ion battery cathodes: An evaluation based on high-throughput ab initio calculations. Chem Mater. 2011;23:3495.10.1021/cm200949v
  • Hautier G, Jain A, Chen H, et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput Ab initio computations. J Mater Chem. 2011;21:147.
  • Xiao R, Li H, Chen L. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations. J Materiomics. 2015;1:325–332.
  • Lu P, Harris SJ. Electrochem. Commun. 2011;13:1035.