1,527
Views
16
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Thermal and aqueous stability improvement of graphene oxide enhanced diphenylalanine nanocomposites

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 172-179 | Received 22 Nov 2016, Accepted 26 Dec 2016, Published online: 23 Feb 2017

References

  • Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites: a new concept of ecological, bioinspired, and functional hybrid materials. Adv Mater. 2007;19:1309–1319.
  • Sanchez C, Julian B, Belleville P, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15:3559–3592.10.1039/b509097k
  • Biercuk MJ, Llaguno MC, Radosavljevic M, et al. Carbon nanotube composites for thermal management. Appl Phys Lett. 2002;80:2767–2769.
  • Ounaies Z, Park C, Wise KE, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol. 2003;63:1637–1646.
  • Weisenberger MC, Grulke EA, Jacques D, et al. Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J Nanosci Nanotechnol. 2003;3:535–539.10.1166/jnn.2003.239
  • Ajayan P, Schadler L, Braun P. Nanocomposite science and technology. Wieinheim: Wiley; 2006.
  • Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res. 2009;12:1–39.
  • Van Vlierberghe S, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;12:1387–13408.10.1021/bm200083n
  • Ariga K, Li J, Fei J, et al. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv Mater. 2016;28:1251–1286.
  • Zou Q, Liu K, Abbas M, et al. Peptide-Modulated Self-assembly of chromophores toward biomimetic light-harvesting nanoarchitectonics. Adv Mater. 2016;28:1031–1043.
  • Li Q, Jia Y, Dai L, Yang Y, Li J. Controlled rod nanostructured assembly of diphenylalanine and their optical waveguide properties. ACS Nano. 2015;9:2689–2695.10.1021/acsnano.5b00623
  • Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev. 2016;45:5589–5604.10.1039/C6CS00176A
  • Wang J, Liu K, Yan L, et al. Trace solvent as a predominant factor to tune dipeptide self-assembly. ACS Nano. 2016;10:2138–2143.10.1021/acsnano.5b06567
  • Rosenman G, Beker P, Koren I, et al. Bioinspired peptide nanotubes: deposition technology, basic physics and nanotechnology applications. J Pept Sci. 2011;17:75–87.10.1002/psc.v17.2
  • Seabra AB, Durán N. Biological applications of peptides nanotubes: an overview. Peptides. 2013;39:47–54.10.1016/j.peptides.2012.10.007
  • Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G. Strong piezoelectricity in bioinspired peptide nanotubes. ACS Nano. 2010;4:610–614.10.1021/nn901327v
  • Kelly CM, Northey T, Ryan K, Brooks BR, Kholkin AL, Rodriguez BJ, Buchete N-V. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field. Biophys Chem. 2015;196:16–24.
  • Vasilev S, Zelenovskiy P, Vasileva D, et al. Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J Phys Chem Solids. 2016;93:68–72.10.1016/j.jpcs.2016.02.002
  • Andersen KB, Castillo-Leon J, Hedstrom M, et al. Stability of diphenylalanine peptide nanotubes in solution. Nanoscale. 2011;3:994–998.
  • Castillo J, Sasso L, Svendsen WE. Self-assembled peptide nanostructures: advances and applications in nanobiotechnology. Boca Raton: CRC Press; 2012.
  • Kuilla T, Bhadra S, Yao D, et al. Recent advances in graphene based polymer composites. Prog Polym Sci. 2010;35:1350–1375.
  • Montenegro J, Vázquez-Vázquez C, Kalinin A, et al. Coupling of carbon and peptide nanotubes. J Am Chem Soc. 2014;136:2484–2491.10.1021/ja410901r
  • Yuan J, Chen J, Wu X, et al. A NADH biosensor based on diphenylalanine peptide/carbon nanotube nanocomposite. J Electroanal Chem. 2011;656:120–124.10.1016/j.jelechem.2010.12.018
  • Chen RJ, Zhang Y, Wang D, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001;123:3838–3839.10.1021/ja010172b
  • Li C, Adamcik J, Mezzenga R. Biodegradable nanocomposites of amyloid fibrils and graphene with shape-memory and enzyme-sensing properties. Nat Nanotechnol. 2012;7:421–427.
  • Kumar B, Lee KY, Park H-K, et al. Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano. 2011;5:4197–4204.10.1021/nn200942s
  • Wu L, Alamusi Xue J, Itoi T, et al. Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. J Intell Mater Syst Struct. 2014;25:1813–1824.10.1177/1045389X14529609
  • Wang Y, Li Z, Hu D, et al. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010;132:9274–9276.10.1021/ja103169v
  • Hu Y, Li F, Han D, et al. Biocompatible graphene for bioanalytical applications. Berlin Heidelberg: Springer; 2014.
  • Liu Y, Yu D, Zeng C, et al. Biocompatible graphene oxide-based glucose biosensors. Langmuir. 2010;26:6158–6160.
  • Liu Z, Robinson JT, Sun X, et al. PEGylated Nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130:10876–10877.10.1021/ja803688x
  • Han TH, Lee WJ, Lee DH, et al. Peptide/graphene hybrid assembly into core/shell nanowires. Adv Mater. 2010;22:2060–2064.
  • Damm S, Lordan F, Murphy A, et al. Application of AAO matrix in aligned gold nanorod array substrates for surface-enhanced fluorescence and Raman scattering. Plasmonics. 2014;9:1371–1376.10.1007/s11468-014-9751-y
  • Fedele S, Hakami M, Murphy A, et al. Strong coupling in molecular exciton-plasmon Au nanorod array systems. Appl Phys Lett. 2016;108:053102.
  • Lordan F, Damm S, Kennedy E, et al. The effect of Ag nanoparticles on surface-enhanced luminescence from Au nanovoid arrays. Plasmonics. 2013;8:1567–1575.10.1007/s11468-013-9573-3
  • McNamara D, Alveen P, Damm S, et al. A Raman spectroscopy investigation into the influence of thermal treatments on the residual stress of polycrystalline diamond. Int J Refract Met Hard Mater. 2015;52:114–122.10.1016/j.ijrmhm.2015.04.025
  • Damm S, Craig Carville N, Manzo M, et al. Surface enhanced luminescence and Raman scattering from ferroelectrically defined Ag nanopatterned arrays. Appl Phys Lett. 2013;103:083105.
  • Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–675.
  • Glasbey CA. An analysis of histogram-based thresholding algorithms . CVGIP Graph Model Image Process. 1993;55:532–537.10.1006/cgip.1993.1040
  • Kim J, Cote LJ, Kim F, et al. Graphene oxide sheets at interfaces. J Am Chem Soc. 2010;132:8180–8186.10.1021/ja102777p
  • Wang Z, Huang P, Bhirde A, et al. A nanoscale graphene oxide–peptide biosensor for real-time specific biomarker detection on the cell surface. Chem Commun. 2012;48:9768.
  • Liang P, Li Q, Wu Z, et al. Graphene oxide–peptide nanoassembly as a general approach for monitoring the activity of histone deacetylases. Analyst. 2016;141:3989–3992.10.1039/C6AN00902F
  • Zhang M, Yin B-C, Wang X-F, et al. Interaction of peptides with graphene oxide and its application for real-time monitoring of protease activity. Chem Commun (Camb). 2011;47:2399–2401.10.1039/C0CC04887A
  • Georgakilas V, Tiwari JN, Kemp KC, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116:5464–5519.
  • Ferrari AC. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007;143:47–57.10.1016/j.ssc.2007.03.052
  • Filik J. Raman spectroscopy: a simple, non-destructive way to characterise diamond and diamond-like materials. Spectrosc Eur. 2005;17:10–17.
  • Lekprasert B, Korolkov V, Falamas A, et al. Investigations of the supramolecular structure of individual diphenylalanine nano- and microtubes by polarized Raman microspectroscopy. Biomacromolecules. 2012;13:2181–2187.10.1021/bm3005929
  • Myshakina NS, Ahmed Z, Asher SA. Dependence of amide vibrations on hydrogen bonding. J Phys Chem B. 2008;112:11873–11877.10.1021/jp8057355
  • Krimm S, Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364.10.1016/S0065-3233(08)60528-8
  • MacDonald RA, Laurenzi BF, Viswanathan G, et al. Collagen–carbon nanotube composite materials as scaffolds in tissue engineering. J Biomed Mater Res Part A. 2005;74A:489–496.10.1002/(ISSN)1552-4965
  • Dalton AB, Stephan C, Coleman JN, et al. Selective interaction of a semiconjugated organic polymer with single-wall nanotubes. J Phys Chem B. 2000;104:10012–10016.10.1021/jp002857o
  • Salvador-Morales C, Franklin E, Chambers G, et al. Characterization of an interaction between functionalized carbon nanotubes and an enzyme. J Nanosci Nanotechnol. 2003;3:209–213.
  • Adler-Abramovich L, Reches M, Sedman VL, et al. Thermal and chemical stability of diphenylalanine peptide nanotubes: implications for nanotechnological applications. Langmuir. 2006;22:1313–1320.10.1021/la052409d
  • Sedman VL, Adler-Abramovich L, Allen S, et al. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J Am Chem Soc. 2006;128:6903–6908.10.1021/ja060358g
  • Hwu JM, Jiang GJ, Gao ZM, et al. The characterization of organic modified clay and clay-filled PMMA nanocomposite. J Appl Polym Sci. 2002;83:1702–1710.10.1002/(ISSN)1097-4628
  • Gao W, Alemany LB, Ci L, et al. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1:403–408.
  • Gómez-Romero P, Sanchez C. Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New J Chem. 2005;29:57–58.
  • Wang M, Oh J, Ghosh T, et al. An interleaved porous laminate composed of reduced graphene oxide sheets and carbon black spacers by in situ electrophoretic deposition. RSC Adv. 2014;4:3284–3292.
  • Leroux F, Taviot-Guého C. Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies. J Mater Chem. 2005;15:3628–3642.10.1039/b505014f
  • Gómez-Romero P, Ayyad O, Suárez-Guevara J, et al. Hybrid organic–inorganic materials: from child’s play to energy applications. J Solid State Electrochem. 2010;14:1939–1945.10.1007/s10008-010-1076-y