1,195
Views
9
CrossRef citations to date
0
Altmetric
Bio-inspired and biomedical materials

Fabrication of a reticular poly(lactide-co-glycolide) cylindrical scaffold for the in vitro development of microvascular networks

, , &
Pages 163-171 | Received 08 Sep 2016, Accepted 30 Dec 2016, Published online: 01 Mar 2017

References

  • Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–753.10.1084/jem.138.4.745
  • Kucera T, Eglinger J, Strilic B, et al. Vascular lumen formation from a cell biological perspective. Novartis Found Symp. 2007;283:46–56.
  • Scheller K, Dally I, Hartmann N, et al. Upcyte(R) microvascular endothelial cells repopulate decellularized scaffold. Tissue Eng Part C: Methods. 2013;19:57–67.10.1089/ten.tec.2011.0723
  • Wong KH, Chan JM, Kamm RD, et al. Microfluidic models of vascular functions. Annu Rev Biomed Eng. 2012;14:205–230.10.1146/annurev-bioeng-071811-150052
  • Kim Y, Lobatto ME, Kawahara T, et al. Probing nanoparticle translocation across the permeable endothelium in experimental atherosclerosis. Proc Nat Acad Sci USA. 2014;111:1078–1083.10.1073/pnas.1322725111
  • Cuchiara MP, Gould DJ, McHale MK, et al. Integration of self-assembled microvascular networks with microfabricated PEG-based hydrogels. Adv Funct Mater. 2012;22:4511–4518.10.1002/adfm.v22.21
  • Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, et al. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 2005;11:302–309.10.1089/ten.2005.11.302
  • Fidkowski C, Kaazempur-Mofrad MR, Borenstein J, et al. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng. 2005;11:302–309.10.1089/ten.2005.11.302
  • Hurley JR, Balaji S, Narmoneva DA. Complex temporal regulation of capillary morphogenesis by fibroblasts. Am J physiol Cell physiol. 2010;299:C444–C453.10.1152/ajpcell.00572.2009
  • Franco C, Gerhardt H. Tissue engineering: blood vessels on a chip. Nature. 2012;488:465–466.10.1038/488465a
  • Sukmana I. Microvascular guidance: a challenge to support the development of vascularised tissue engineering construct. Sci World J. 2012;2012:201352.
  • Ignatius AA, Claes LE. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials. 1996;17:831–839.10.1016/0142-9612(96)81421-9
  • Wu XS, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J Biomater Sci Polym Ed. 2001;12:21–34.10.1163/156856201744425
  • Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly(dl-lactic acid) size-dependence. Biomaterials. 1995;16:305–311.10.1016/0142-9612(95)93258-F
  • Samavedi S, Vaidya P, Gaddam P, et al. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Biotechnol Bioeng. 2014;111:2549–2559.10.1002/bit.v111.12
  • Şenel Ayaz HG, Perets A, Ayaz H, et al. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering. Biomaterials. 2014;35:8540–8552.10.1016/j.biomaterials.2014.06.029
  • Son SR, Franco RA, Bae SH, et al. Electrospun PLGA/gelatin fibrous tubes for the application of biodegradable intestinal stent in rat model. J Biomed Mater Res Part B: Appl Biomater. 2013;101B:1095–1105.10.1002/jbm.b.32923
  • Mirdailami O, Soleimani M, Dinarvand R, et al. Controlled release of rhEGF and rhbFGF from electrospun scaffolds for skin regeneration. J biomed mater res Part A. 2015;103:3347–3385.
  • Juodkazis S. Writing 3D patterns of microvessels. Int J Nanomed. 2012;7:3701–3702.10.2147/IJN
  • Malathi S, Nandhakumar P, Pandiyan V, et al. Novel PLGA-based nanoparticles for the oral delivery of insulin. Int J Nanomed. 2015;10:2207–2218.
  • Pirlo RK, Wu P, Liu J, et al. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP™. Biotechnol Bioeng. 2012;109:262–273.10.1002/bit.v109.1
  • Wang Gou-Jen, Wang C-W, Cheng C-W, et al. Fabrication of pillared PLGA microvessel scaffold using femtosecond laser ablation. Int J Nanomed. 2012;7:1865.10.2147/IJN
  • Wang G-J, Lin Y-C, Hsu S-h. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls. Biomed Microdevices. 2010;12:841–848.10.1007/s10544-010-9438-x
  • López JA, Zheng Y. Synthetic microvessels. J thromb haemost. 2013;11(Suppl 1):67–74.10.1111/jth.12245
  • Zheng Y, Chen J, Craven M, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Nat Acad Sci USA. 2012;109:9342–9347.10.1073/pnas.1201240109
  • Wong AD, Searson PC. Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Res. 2014;74:4937–4945.10.1158/0008-5472.CAN-14-1042
  • Kim S, Lee H, Chung M, et al. Engineering of functional, perfusable 3D microvascular networks on a chip. Lab Chip. 2013;13:1489–1500.10.1039/c3lc41320a
  • Wang G-J, Ho K-H, Hsu S-h, et al. Microvessel scaffold with circular microchannels by photoresist melting. Biomed Microdevices. 2007;9:657–663.10.1007/s10544-007-9067-1
  • Pries AR, Schonfeld D, Gaehtgens P, et al. Diameter variability and microvascular flow resistance. Am J Physiol. 1997;272:H2716–25.
  • Chang C-C, Wu J-Y, Chien C-W, et al. A fluorescent carbazole derivative: high sensitivity for quadruplex DNA. Anal Chem. 2003;75:6177–6183.10.1021/ac034789i
  • Naik N, Kumar V, Chaikof EL, et al. MEMS-assisted spatially homogeneous endothelialization of a high length-to-depth aspect ratio microvascular network. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference. 2011;2011:290–293.
  • Li YH, Wang ZD, Wang W, et al. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Exp Biol Med. 2015;240:1465–1471.
  • Liu C, Huang Y, Pang M, et al. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS ONE. 2014;10:e0117709-e.
  • Shin YC, Lee JH, Jin L, et al. Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J Nanobiotechnol. 2015;13:1845.10.1186/s12951-015-0081-9
  • Lanao RPF, Jonker AM, Wolke JG, et al. Physicochemical properties and applications of poly (lactic-co-glycolic acid) for use in bone regeneration. Tissue Eng Part B: Rev. 2013;19:380–390.10.1089/ten.teb.2012.0443
  • Lu L, Garcia CA, Mikos AG. In vitro degradation of thin poly (DL-lactic-co-glycolic acid) films. J Biomed Mater Res. 1999;46:236–244.10.1002/(ISSN)1097-4636
  • Dumitru AC, Espinosa FM, Garcia R, et al. In situ nanomechanical characterization of the early stages of swelling and degradation of a biodegradable polymer. Nanoscale. 2015;7:5403–5410.10.1039/C5NR00265F
  • Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res. 2014;355:607–619.10.1007/s00441-013-1779-3
  • Cao G, O’Brien CD, Zhou Z, et al. Involvement of human PECAM-1 in angiogenesis and in vitro endothelial cell migration. Am J Physiol Cell Physiol. 2002;282:C1181–C1190.10.1152/ajpcell.00524.2001
  • Wu J, Sheibani N. Modulation of VE-cadherin and PECAM-1 mediated cell–cell adhesions by mitogen-activated protein kinases. J Cell Biochem. 2003;90:121–137.10.1002/(ISSN)1097-4644
  • Giannotta M, Trani M, Dejana E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev Cell. 2013;26:441–454.10.1016/j.devcel.2013.08.020
  • Strilić B, Kučera T, Eglinger J, et al. The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell. 2009;17:505–515.10.1016/j.devcel.2009.08.011
  • Crosby CV, Fleming PA, Argraves WS, et al. VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood. 2005;105:2771–2776.10.1182/blood-2004-06-2244
  • Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013;109:407–415.10.1160/TH12-09-0678
  • Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng. 2013;15:177–200.10.1146/annurev-bioeng-071812-152428
  • Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12:2093–2104.10.1089/ten.2006.12.2093
  • Fan XH, Wu CH, Wang LF, et al. Cryoglobulinemia is an independent factor negatively associated with sustained virological response in chronic hepatitis C patients. Chin Med J. 2012;125:4014–4017.