3,698
Views
78
CrossRef citations to date
0
Altmetric
Engineering and structural materials

Thermal rejuvenation in metallic glasses

, , &
Pages 152-162 | Received 16 Sep 2016, Accepted 06 Jan 2017, Published online: 20 Feb 2017

References

  • Suryanarayana C, Inoue A. Bulk metallic glasses. Boca Raton, FL: CRC Press; 2010.10.1201/9781420085976
  • Greer AL, Ma E. Bulk metallic glasses: at the cutting edge of metals research. MRS Bulletin. 2007;32:611–619.10.1557/mrs2007.121
  • Demetriou MD, Wiest A, Hofmann DC, et al. Amorphous metals for hard-tissue prosthesis. JOM. 2010;62:83–91.10.1007/s11837-010-0038-2
  • Wang WH. Correlation between relaxations and plastic deformation, and elastic model of flow in metallic glasses and glass-forming liquids. J Appl Phys. 2011;110:053521.
  • Dmowski W, Fan C, Morrison ML, et al. Structural change in bulk metallic glass after annealing below the glass transition temperature. Mater Sci Eng A. 2007;471:125–129.10.1016/j.msea.2006.12.137
  • Zheng N, Wang G, Zhang LC, et al. In situ high-energy x-ray diffraction observation of structural evolution in a Ti-based bulk metallic glass upon heating. J Mater Res. 2010;25:2271–2277.10.1557/jmr.2010.0298
  • Hu L, Yue Y. Secondary relaxation in metallic glass formers: its correlation with the genuine johari−goldstein relaxation. J Phys Chem C. 2009;113:15001–15006.10.1021/jp903777f
  • Haruyama O, Nakayama Y, Wada R, et al. Volume and enthalpy relaxation in Zr55Cu30Ni5Al10 bulk metallic glass. Acta Mater. 2010;58:1829–1836.10.1016/j.actamat.2009.11.025
  • Evenson Z, Gallino I, Busch R. The effect of cooling rates on the apparent fragility of Zr-based bulk metallic glasses. J Appl Phys. 2010;107:123529.10.1063/1.3452381
  • Qiao JC, Pelletier JM. Dynamic mechanical relaxation in bulk metallic glasses: a review. J Mater Sci Tech. 2014;30:523–545.10.1016/j.jmst.2014.04.018
  • Duine PA, Sietsma J, van den Beukel A. Defect production and annihilation near equilibrium in amorphous Pd40Ni40P20 investigated from viscosity data. Acta Met Mater. 1992;40:743–751.10.1016/0956-7151(92)90016-8
  • Zhang Y, Hahn H. Study of the kinetics of free volume in Zr45.0Cu39.3Al7.0Ag8.7 bulk metallic glasses during isothermal relaxation by enthalpy relaxation experiments. J Non-Cryst Solids. 2009;355:2616–2621.10.1016/j.jnoncrysol.2009.09.003
  • Egami T, Levashov VA, Morris JR, et al. Statistical mechanics of metallic glasses and liquids. Met Mater Trans A. 2010;41:1628–1633.10.1007/s11661-010-0180-z
  • Zhuang YX, Wang WH. Effects of relaxation on glass transition and crystallization of ZrTiCuNiBe bulk metallic glass. J Appl Phys. 2000;87:8209–8211.10.1063/1.373523
  • Wang XD, Lee H, Yi S. Crystallization behavior of preannealed bulk amorphous alloy Zr62Al8Ni13Cu17. Mater Lett. 2006;60:935–938.10.1016/j.matlet.2005.10.080
  • Zhang Y, Wang WH, Greer AL. Making metallic glasses plastic by control of residual stress. Nat Mater. 2006;5:857–860.10.1038/nmat1758
  • Méar FO, Lenk B, Zhang Y, et al. Structural relaxation in a heavily cold-worked metallic glass. Scripta Mater. 2008;59:1243–1246.10.1016/j.scriptamat.2008.08.023
  • Meng F, Tsuchiya K, Seiichiro Ii S, et al. Reversible transition of deformation mode by structural rejuvenation and relaxation in bulk metallic glass. Appl Phys Lett. 2012;101:121914.10.1063/1.4753998
  • Ichitsubo T, Matsubara E, Yamamoto T, et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Phys Rev Lett. 2005;95:245501.10.1103/PhysRevLett.95.245501
  • Ichitsubo T, Matsubara E, Chen HS, et al. Structural instability of metallic glasses under radio-frequency-ultrasonic perturbation and its correlation with glass-to-crystal transition of less-stable metallic glasses. J Chem Phys. 2006;125:154502.10.1063/1.2346672
  • Fujita T, Guan PF, Sheng HW, et al. Coupling between chemical and dynamic heterogeneity in a multicomponent bulk metallic glass. Phys Rev B. 2010;81:140204(R).10.1103/PhysRevB.81.140204
  • Leocmach M, Tanaka H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat Commun. 2012;3:974.10.1038/ncomms1974
  • Feng SD, Qi L, Wang LM, et al. Structural feature of Cu64Zr36 metallic glass on nanoscale: densely-packed clusters with loosely-packed surroundings. Scripta Mater. 2016;115:57–61.10.1016/j.scriptamat.2015.12.038
  • Ketov SV, Sun YH, Nachum S, et al. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524:200–203.10.1038/nature14674
  • Ichitsubo T, Kato H, Matsubara E, et al. Static heterogeneity in metallic glasses and its correlation to physical properties. J Non-Cryst Solids. 2011;357:494–500.10.1016/j.jnoncrysol.2010.06.056
  • Saida J, Setyawan AD, Kato H, et al. Cooling process and cast structure of Zr-Al-Ni-Cu–based bulk metallic glasses produced in various atmospheres. Met Mater Trans A. 2011;42:1450–1455.10.1007/s11661-010-0444-7
  • Qiao JC, Pelletier JM. Enthalpy relaxation in Cu46Zr45Al7Y2 and Zr55Cu30Ni5Al10 bulk metallic glasses by differential scanning calorimetry (DSC). Intermetallics. 2011;19:9–18.10.1016/j.intermet.2010.08.042
  • Struik LCE. Some problems in the non-linear viscoelasticity of amorphous glassy polymers. J Non-Cryst Solids. 1991;131–133:395–407.10.1016/0022-3093(91)90333-2
  • de Koning GJM, Lemstra PJ. Crystallization phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 2. embrittlement and rejuvenation. Polymer. 1993;34:4089–4094.
  • Utz M, Debenedetti PG, Stillinger FH. Atomic simulation of aging and rejuvenation in glasses. Phys Rev Lett. 2000;84:1471–1474.10.1103/PhysRevLett.84.1471
  • Kumar G, Rector D, Conner RD, et al. Embrittlement of Zr-based bulk metallic glasses. Acta Mater. 2009;57:3572–3583.10.1016/j.actamat.2009.04.016
  • Saida J, Yamada R, Wakeda M. Recovery of less relaxed state in Zr-Al-Ni-Cu bulk metallic glass annealed above glass transition temperature. Appl Phys Lett. 2013;103:221910.10.1063/1.4835076
  • Wakeda M, Saida J, Li J, et al. Controlled rejuvenation of amorphous metals with thermal processing. Sci Rep. 2015;5:10545.10.1038/srep10545
  • Chen HS. On mechanisms of structural relaxation in a Pd48Ni32P20 glass. J Non-Cryst Solids. 1981;46:289–305.10.1016/0022-3093(81)90007-7
  • Ding J, Cheng YQ, Sheng HW, et al. Short-range structural signature of excess specific heat and fragility of metallic-glass-forming supercooled liquids. Phys Rev B. 2012;85:060201.10.1103/PhysRevB.85.060201
  • Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys. 1984;81:511–519.10.1063/1.447334
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys. 1981;52:7182–7190.10.1063/1.328693
  • van den Beukel A, Sietsma J. The glass transition as a free volume related kinetic phenomenon. Acta Met Mater. 1990;38:383–389.10.1016/0956-7151(90)90142-4
  • Khonik SV, Kaverin LD, Kobelev NP, et al. The kinetics of structural relaxation of bulk and ribbon glassy Pd40Cu30Ni10P20 monitored by resistance and density measurements. J Non-Cryst Solids. 2008;354:3896–3902.10.1016/j.jnoncrysol.2008.05.024
  • Evenson Z, Busch R. Equilibrium viscosity, enthalpy recovery and free volume relaxation in a Zr44Ti11Ni10Cu10Be25 bulk metallic glass. Acta Mater. 2011;59:4405–4415.
  • Yokoyama Y, Yamasaki T, Liaw PK, et al. Study of the structural relaxation-induced embrittlement of hypoeutectic Zr-Cu-Al ternary bulk glassy alloys. Acta Mater. 2008;56:6097–6108.10.1016/j.actamat.2008.08.026
  • Launey ME, Busch R, Kruzic JJ. Influence of structural relaxation on the fatigue behavior of a Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloy. Scripta Mater. 2006;54:483–487.
  • Tuinstra P, Duine PA, Sietsma J, et al. The calorimetric glass transition of amorphous Pd40Ni40P20. Acta Met Mater. 1995;43:2815–2823.10.1016/0956-7151(94)00450-V
  • Cheng YQ, Sheng HW, Ma E. Relationship between structure, dynamics, and mechanical properties in metallic glass-forming alloys. Phys Rev B. 2008;78:014207.10.1103/PhysRevB.78.014207
  • Srolovitz D, Egami T, Vitek V. Radial distribution function and structural relaxation in amorphous solids. Phys Rev B. 1981;24:6936–6944.10.1103/PhysRevB.24.6936
  • Cheng YQ, Ma E. Indicators of internal structural states for metallic glasses: local order, free volume, and configurational potential energy. Appl Phys Lett. 2008;93:051910.10.1063/1.2966154
  • Hermann H, Kokotin V, Eckert J. Locally fluctuating cooling rate as possible reason for non-crystalline plasticity in metallic glass. Europhys Lett. 2012;98:16003.10.1209/0295-5075/98/16003
  • Sheng HW, Luo WK, Alamgir FM, et al. Atomic packing and short-to-medium range order in metallic glasses. Nature. 2006;439:419–425.10.1038/nature04421
  • Sun YL, Qu DD, Sun YJ, et al. Inhomogeneous structure and glass-forming ability in Zr-based bulk metallic glasses. J Non-Cryst Solids. 2010;356:39–45.10.1016/j.jnoncrysol.2009.09.021
  • Ritter Y, Albe K. Thermal annealing of shear bands in deformed metallic glasses: recovery mechanism in Cu64Zr36 studied by molecular dynamics simulations. Acta Mater. 2011;59:7082–7094.10.1016/j.actamat.2011.07.063
  • Miracle DB, Greer AL, Kelton KF. Icosahedral and dense random cluster packing in metallic glass structures. J Non-Cryst Solids. 2008;354:4049–4055.10.1016/j.jnoncrysol.2008.05.006
  • Wakeda M, Shibutani Y. Icosahedral clustering with medium-range order and local elastic properties of amorphous metals. Acta Mater. 2010;58:3963–3969.10.1016/j.actamat.2010.03.029
  • Hwang J, Melgarejo ZH, Kalay YE, et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys Rev Lett. 2012;108:195505.10.1103/PhysRevLett.108.195505
  • Fukunaga T, Itoh K, Otomo T, et al. Voronoi analysis of the structure of Cu-Zr and Ni-Zr metallic glasses. Intermetallics. 2006;14:893–897.10.1016/j.intermet.2006.01.006
  • Tanaka H. Roles of local icosahedral chemical ordering in glass and quasicrystal formation in metallic glass formers. J Phys Condens Matter. 2003;15:L491–L498.
  • Miyazaki N, Wakeda M, Wang YJ, et al. Prediction of pressure-promoted thermal rejuvenation in metallic glasses. npj Computational Mater. 2016;2:16013.10.1038/npjcompumats.2016.13
  • Yu HB, Wang WH, Samwer K. The β relaxation in metallic glasses: an overview. Mater Today. 2013;16:183–191.10.1016/j.mattod.2013.05.002
  • Lu Z, Shang BS, Sun YT, et al. Revealing β-relaxation mechanism based on energy distribution of flow units in metallic glasses. J Chem Phys. 2016;144:144501.10.1063/1.4945279
  • Tarumi R, Hirao M, Ichitsubo T, et al. Low-temperature acoustic properties and quasiharmonic analysis for Cu-based bulk metallic glasses. Phys Rev B. 2007;76:104206.10.1103/PhysRevB.76.104206
  • Greer AL, Sun YH. Stored energy in metallic glasses due to strains within the elastic limit. Phil Mag. 2016;96:1643–1663.10.1080/14786435.2016.1177231