7,449
Views
71
CrossRef citations to date
0
Altmetric
New topics / Others

Composites of aluminum alloy and magnesium alloy with graphite showing low thermal expansion and high specific thermal conductivity

ORCID Icon, &
Pages 180-186 | Received 08 Oct 2016, Accepted 20 Jan 2017, Published online: 08 Mar 2017

References

  • Carlson RO, Glascock HH, Webster HF, et al. Thermal expansion mismatch in electronic packaging. MRS Proc. Cambridge: Cambridge Univ Press; 1984. p. 177–190.
  • Chung DDL. Materials for electronic packaging. Woburn (MA): Butterworth-Heinemann; 1995.
  • Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene 2008. Nano Lett. 2008;8(3):902–907.10.1021/nl0731872
  • Yoon D, Son Y-W, Cheong H. Negative thermal expansion coefficient of graphene measured by Raman Spectroscopy. Nano Lett. ACS Publications; 2011;11(8):3227–3231.10.1021/nl201488g
  • Huang X, Qi X, Boey F, et al. Graphene-based composites. Chem Soc Rev. 2012 Jan 21;41(2):666–686.10.1039/C1CS15078B
  • Jagannadham K. Orientation dependence of thermal conductivity in copper-graphene composites. J Appl Phys. 2011;110(7):74901.10.1063/1.3641640
  • Torralba JM, da Costa CE, Velasco F. P/M aluminum matrix composites: an overview. J Mater Process Technol. 2003;133(1-2):203–206.10.1016/S0924-0136(02)00234-0
  • Hutsch T, Schubert T, Schmidt J, et al. Innovative metal-graphite composites as thermally conducting materials. Proc Powder Metall World Congr Exhib PM2010. 2010. p. 361–368.
  • Pohlmann C, Röntzsch L, Kalinichenka S, et al. Magnesium alloy-graphite composites with tailored heat conduction properties for hydrogen storage applications. Int J Hydrogen Energy. 2010;35(23):12829–12836.10.1016/j.ijhydene.2010.08.104
  • Fukushima H. High-thermal-conductivity graphite-particles-dispersed-composite and its production method. United States of America; US 7,851,055 B2, 2010.
  • Ueno T, Yoshioka T, Ogawa J, et al. Highly thermal conductive metal/carbon composites by pulsed electric current sintering. Synth Met. 2009;159(21-22):2170–2172.10.1016/j.synthmet.2009.10.006
  • Firkowska I, Boden A, Boerner B, et al. The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett. 2015;15(7):4745–4751.10.1021/acs.nanolett.5b01664
  • Etter T, Papakyriacou M, Schulz P, et al. Physical properties of graphite / aluminium composites produced by gas pressure infiltration method. Carbon N Y. 2003;41(5):1017–1024.10.1016/S0008-6223(02)00448-7
  • Munir Z a, Anselmi-Tamburini U, Ohyanagi M. The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci. 2006 Feb;41(3):763–777.10.1007/s10853-006-6555-2
  • Zúñiga A, Ajdelsztajn L, Lavernia EJ. Spark plasma sintering of a nanocrystalline Al-Cu-Mg-Fe-Ni-Sc alloy. Metall Mater Trans A Phys Metall Mater Sci. 2006;37:1343–1352.
  • Kubota M. Properties of nano-structured pure Al produced by mechanical grinding and spark plasma sintering. J Alloys Compd. 2007;434-435:294–297.10.1016/j.jallcom.2006.08.329
  • Boden A, Boerner B, Kusch P, et al. Nanoplatelet size to control the alignment and thermal conductivity in copper–graphite composites. Nano Lett. 2014 Jun 11;14(6):3640–3644.10.1021/nl501411g
  • Xie G, Ohashi O, Yoshioka T, et al. Effect of interface behavior between particles on properties of pure Al powder compacts by spark plasma sintering. Mater Trans. 2001;42(9):1846–1849.10.2320/matertrans.42.1846
  • Muhammad WNAW, Sajuri Z, Mutoh Y, et al. Microstructure and mechanical properties of magnesium composites prepared by spark plasma sintering technology. J Alloys Compd. Elsevier B.V.; 2011;509(20):6021–6029.10.1016/j.jallcom.2011.02.153
  • Chu FI, Taylor RE, Donaldson AB. Thermal diffusivity measurements at high temperatures by the radial flash method. J Appl Phys. AIP Publishing; 1980;51(1):336–341.10.1063/1.327377
  • Donaldson AB, Taylor RE. Thermal diffusivity measurement by a radial heat flow method. J Appl Phys. AIP Publishing; 1975;46(10):4584–4589. 10.1063/1.321399
  • Pavlina EJ, Van Tyne CJ. Correlation of yield strength and tensile strength with hardness for steels. J Mater Eng Perform. 2008 Apr 3;17(6):888–893.10.1007/s11665-008-9225-5
  • Shen Y-L, Fishencord E, Chawla N. Correlating macrohardness and tensile behavior in discontinuously reinforced metal matrix composites. Scr Mater. 2000 Feb;42(5):427–432.10.1016/S1359-6462(99)00368-1
  • Wolff M, Ebel T, Dahms M. Sintering of Magnesium. Adv Eng Mater. 2010;12(9):829–836.10.1002/adem.201000038
  • Davis JR, Associates JRD. Committee ASMIH. Aluminum and Aluminum Alloys. Ohio: ASM International; 1993.
  • Schaffer GB, Huo SH. On development of sintered 7xxx series aluminium alloys. Powder Metall. 1999;42(3):219–226.10.1179/003258999665558
  • Nelson JB, Riley DP. The thermal expansion of graphite from 15 c. to 800 c.: part I. experimental. Proc Phys Soc. IOP Publishing; 1945;57(6):477. 10.1088/0959-5309/57/6/303