2,042
Views
18
CrossRef citations to date
0
Altmetric
Energy materials

Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures

, , &
Pages 187-196 | Received 18 Oct 2016, Accepted 25 Jan 2017, Published online: 13 Mar 2017

References

  • Matoba A, Watase H, Kitai M, et al. Investigation of thermoelectric properties of Si/Ge multilayer with ultra-heavily B doping. Mater Trans. 2008;49:1723–1727.
  • Fleurial J, Gailliard L, Triboulet R, et al. Thermal properties of high quality single crystals of bismuth telluride - part I: Experimental characterization. J Phys Chem Solids. 1988;49:1237–1247.
  • Imai H, Shimakawa Y, Kubo Y. Large thermoelectric power factor in TiS2 crystal with nearly stoichiometric composition. Phys Rev B. 2001;64:241104.
  • Kong W, Lu L, HW Z, et al. Thermoelectric power of a single-walled carbon nanotubes strand. J Phys-Condens Matt. 2005;17:1923.
  • Wu P, Gooth J, Zianni X, et al. Large thermoelectric power factor enhancement observed in InAs nanowires. Nano Lett. 2013;13:4080–4086.
  • Chen G. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys Rev B. 1998;57:14958–14973.
  • Xu W, Nazaretski E, Lu M. Characterization of the thermal conductivity of La0.95sr0.05CoO3 thermoelectric oxide nanofibers. Nano Res. 2014;7:1224–1231.
  • Zhao XB, Ji XH, Zhang YH, et al. Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl Phys Lett. 2005;86:062111.
  • Hochbaum AI, Chen R, Delgado RD, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature. 2008;451:163–167.
  • Yamasaka S, Nakamura Y, Ueda T, et al. Phonon transport control by nanoarchitecture including epitaxial Ge nanodots for Si-based thermoelectric materials. Sci Rep. 2015;5:14490.
  • Yamasaka S, Nakamura Y, Ueda T, et al. Fabrication of Si thermoelectric nanomaterials containing ultrasmall epitaxial Ge nanodots with an ultrahigh density. J Electron Mater. 2015;44(6):2015–2020.
  • Kim H, Kim I, Hj Choi, et al. Thermal conductivities of Si1−xGex nanowires with different germanium concentrations and diameters. Appl Phys Lett. 2010;96:233106.
  • Martinez JA, Provencio PP, Picraux ST, et al. Enhanced thermoelectric figure of merit in SiGe alloy nanowires by boundary and hole-phonon scattering. J Appl Phys. 2011;110:074317.
  • Wang XW, Lee H, Lan YC, et al. Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy. Appl Phys Lett. 2008;93:193121.
  • Lee SM, Cahill DG, Venkatasubramanian R. Thermal conductivity of SiGe superlattices. Appl Phys Lett. 1997;70:2957–2959.
  • Borca-Tasciuc T, Liu W, Liu J, et al. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattice Microst. 2000;28:199–206.
  • Huxtable ST, Abramson AR, Tien CL, et al. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl Phys Lett. 2002;80:1737–1739.
  • Li D, Wu Y, Fan R, et al. Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett. 2003;83:3186–3188.
  • Yang X, To AC, Tian R. Anomalous heat conduction behavior in thin finite-size silicon nanowires. Nano-technology. 2010;21:155704.
  • Liu L, Chen X. Effect of surface roughness on thermal conductivity of silicon nanowires. J Appl Phys. 2010;107:033501.
  • Chen Y, Li D, Lukes JR, et al. Minimum superlattice thermal conductivity from molecular dynamics. Phys Rev B. 2005;72:174302.
  • Volz SG, Chen G. Molecular dynamics simulation of thermal conductivity of silicon nanowires. Appl Phys Lett. 1999;75:2056–2058.
  • Abs da Cruz C, Termentzidis K, Chantrenne P, et al. Molecular dynamics simulations for the prediction of thermal conductivity of bulk silicon and silicon nanowires: influence of interatomic potentials and boundary conditions. J Appl Phys. 2011;110:034309.
  • Mingo N, Yang L, Li D, et al. Predicting the thermal conductivity of Si and Ge nanowires. Nano Lett. 2003;3:1713–1716.
  • White DP, Klemens PG. Thermal conductivity of thermoelectric Si0. 8-Ge0. 2 alloys. J Appl Phys. 1992;71:4258–4263.
  • Skye A, Schelling PK. Thermal resistivity of SiGe alloys by molecular-dynamics simulation. J Appl Phys. 2008;103:113524.
  • Hao F, Fang D, Xu Z. Thermal transport in crystalline Si/Ge nano-composites: atomistic simulations and microscopic models. Appl Phys Lett. 2012;100:091903.
  • Donadio D, Galli G. Atomistic simulations of heat transport in silicon nanowires. Phys Rev Lett. 2009;102:195901.
  • Abs da Cruz C, Katcho NA, Mingo N, et al. Thermal conductivity of nanocrystalline SiGe alloys using molecular dynamics simulations. J Appl Phys. 2013;114:164310.
  • Chen J, Zhang G, Li B. Impacts of atomistic coating on thermal conductivity of germanium nanowires. Nano Lett. 2012;12:2826–2832.
  • Hu M, Giapis KP, Goicochea JV, et al. Significant reduction of thermal conductivity in Si/Ge coreshell nanowires. Nano Lett. 2011;11:618–623.
  • Hu M, Zhang X, Giapis KP, et al. Thermal conductivity reduction in core-shell nanowires. Phys Rev B. 2011;84:085442.
  • Garg J, Bonini N, Kozinsky B, et al. Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys Rev Lett. 2011;106:045901.
  • Guo R, Huang B. Approaching the alloy limit of thermal conductivity in single-crystalline Si-based thermoelectric nanocomposites: a molecular dynamics investigation. Sci Rep. 2015;5:9579.
  • Xiao-Peng H, Xiu-Lan H. Molecular dynamics simulation of thermal conductivity in SiGe nanocomposites. Chinese Phys Lett. 2008;25:2973.
  • Li X, Yang R. Equilibrium molecular dynamics simulations for the thermal conductivity of Si/Ge nanocomposites. J Appl Phys. 2013;113:104306.
  • Dames C, Chen G. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J Appl Phys. 2004;95:682–693.
  • Savic I, Donadio D, Gygi F, et al. Dimensionality and heat transport in Si-Ge superlattices. Appl Phys Lett. 2013;102:073113.
  • Haskins JB, Kinaci A, Ça\u{g}in T, et al. Thermal conductivity of Si–Ge quantum dot superlattices. Nanotechnology. 2011;22:155701
  • Landry ES, McGaughey AJH. Effect of interfacial species mixing on phonon transport in semiconductor superlattices. Phys Rev B. 2009;79:075316.
  • Hu M, Poulikakos D. Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 2012;12:5487–5494.
  • Shelley M, Mostofi AA. Prediction of high zT in thermoelectric silicon nanowires with axial germanium heterostructures. Europhys Lett. 2011;94:67001.
  • LAMMPS - Large-scale atomic/molecular massively parallel simulator [Internet]. Available from: http://lammps.sandia.gov.
  • Kinaci A, Haskins JB, Çağın T. On calculation of thermal conductivity from Einstein relation in equilibrium molecular dynamics. J Chem Phys. 2012;137:014106.
  • Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566–5568.
  • Donadio D, Galli G. Temperature dependence of the thermal conductivity of thin silicon nanowires. Nano Lett. 2010;10(3):847–851.
  • Mu X, Wang L, Yang X, et al. Ultra-low thermal conductivity in Si/Ge hierarchical superlattice nanowire. Sci Rep. 2015;5:16697.
  • Sarikurt S, Ozden A, Kandemir A, et al. Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture. J Appl Phys. 2016;119(15):155101.
  • Özden A, Kandemir A, Ay F, et al. Thermal conductivity suppression in nanostructured silicon and germanium nanowires. J Electron Mater. 2016;45(3):1594–1600.
  • Stöhr H, Klemm W. Über zweistoffsysteme mit germanium. i. germanium/aluminium, germanium/zinn und germanium/silicium. Z Anorg Allg Chem. 1939;241:305–323.
  • Abeles B. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys Rev. 1963;131:1906–1911.
  • Melis C, Colombo L. Lattice thermal conductivity of SiGe nanocomposites. Phys Rev Lett. 2014;112:065901.
  • Pernot G, Stoffel M, Savic I. Precise control of thermal conductivity at the nanoscale through individual phonon-scattering barriers. Nat Mater. 2010;:491–495.
  • Li D, Wu Y, Kim P, et al. Thermal conductivity of individual silicon nanowires. Appl Phys Lett. 2003;83:2934–2936.
  • Chen J, Zhang G, Li B. Tunable thermal conductivity of Si1•xGex nanowires. Appl Phys Lett. 2009;95:073117.
  • Zhu T, Ertekin E. Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys Rev B. 2014;90:195209.
  • Cavassilas N, d’Ambrosio S, Bescond M. Quantum simulations of hole transport in Si, Ge, SiGe and GaAs double-gate pmosfets: orientation and strain effects. 2009 IEEE International Electron Devices Meeting (IEDM); 2009. p. 1–4
  • Chen X, Wang Z, Ma Y. Atomistic design of high thermoelectricity on Si/Ge superlattice nanowires. J Phys Chem C. 2011;115(42):20696–20702.
  • Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413(6856):597–602.
  • Yamasaka S, Watanabe K, Sakane S, et al. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials. Sci Rep. 2016;6:22838.
  • Nakamura Y, Isogawa M, Ueda T, et al. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy. 2015;12:845–851.