3,433
Views
40
CrossRef citations to date
0
Altmetric
Energy materials

CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition

, , , , , , , & show all
Pages 253-262 | Received 21 Oct 2016, Accepted 21 Feb 2017, Published online: 10 Apr 2017

References

  • Wang B, Xiao X, Chen T. Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. Nanoscale. 2014;6:12287–12297.10.1039/C4NR04144E
  • Yin W-J, Shi T, Yan Y. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater. 2014;26:4653–4658.10.1002/adma.v26.27
  • Zhou H, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345:542–546.10.1126/science.1254050
  • Perovskite fever. Nat Mater. 2014;13:837.
  • McGehee MD. Perovskite solar cells: continuing to soar. Nat Mater. 2014;13:845–846.10.1038/nmat4050
  • Kim H-S, Im SH, Park N-G. Organolead halide perovskite: new horizons in solar cell research. J Phy Chem C. 2014;118:5615–5625.10.1021/jp409025w
  • Kim H-S, Lee C-R, Im J-H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012;2:591.
  • Best ResearchCell Efficiencies http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
  • Liang P-W, Liao C-Y, Chueh C-C, et al. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater. 2014;26:3748–3754.10.1002/adma.v26.22
  • Chen C-W, Kang H-W, Hsiao S-Y, et al. Efficient and uniform planar-type perovskite solar cells by simple sequential vacuum deposition. Adv Mater. 2014;26:6647–6652.10.1002/adma.v26.38
  • You J, Hong Z, Yang Y, et al. Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014;8:1674–1680.10.1021/nn406020d
  • Im J-H, Jang I-H, Pellet N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nano. 2014;9:927–932.10.1038/nnano.2014.181
  • Lee MM, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338:643–647.10.1126/science.1228604
  • Burschka J, Pellet N, Moon S-J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499:316–319.10.1038/nature12340
  • Noh JH, Im SH, Heo JH, et al. Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 2013;13:1764–1769.10.1021/nl400349b
  • Bi D, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale. 2013;5:11686–11691.10.1039/c3nr01542d
  • Bi D, Moon S-J, Häggman L, et al. Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 2013;3:18762–18766.10.1039/c3ra43228a
  • Ball JM, Lee MM, Hey A, et al. Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ Sci. 2013;6:1739–1743.10.1039/c3ee40810h
  • Liu M, Johnston MB, Snaith HJ. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature. 2013;501:395–398.10.1038/nature12509
  • Chen Q, Zhou H, Hong Z, et al. Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J Am Chem Soc. 2014;136:622–625.10.1021/ja411509g
  • Liang K, Mitzi DB, Prikas MT. Synthesis and characterization of organic−inorganic perovskite thin films prepared using a versatile two-step dipping technique. Chem Mater. 1998;10:403–411.10.1021/cm970568f
  • Docampo P, Hanusch FC, Stranks SD, et al. Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv Energy Mater. 2014;4.
  • Wu Y, Islam A, Yang X, et al. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ Sci. 2014;7:2934–2938.10.1039/C4EE01624F
  • Li N, Dong H, Dong H, et al. Multifunctional perovskite capping layers in hybrid solar cells. J Mater Chem A. 2014;2:14973–14978.10.1039/C4TA02921F
  • Bi DQ, El-Zohry AM, Hagfeldt A, et al. Unraveling the effect of PbI2 concentration on charge recombination kinetics in perovskite solar cells. ACS Photonics. 2015;2:589–594.10.1021/ph500255t
  • Ko H-S, Lee J-W, Park N-G. 15.76% efficiency perovskite solar cells prepared under high relative humidity: importance of PbI2 morphology in two-step deposition of CH3NH3PbI3. J Mater Chem A. 2015;3:8808–8815.10.1039/C5TA00658A
  • Ahn N, Kang SM, Lee J-W, et al. Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. J Mater Chem A. 2015;3:19901–19906.10.1039/C5TA03990H
  • Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater. 2014;24:3250–3258.10.1002/adfm.201304022
  • Zhao YX, Zhu K. Solution chemistry engineering toward high-efficiency perovskite solar cells. J Phys Chem Lett. 2014;5:4175–4186.10.1021/jz501983v
  • Xiao Z, Dong Q, Bi C, et al. Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement. Adv Mater. 2014;26:6503–6509.10.1002/adma.201401685
  • Yang B, Dyck O, Poplawsky J, et al. Perovskite solar cells with near 100% internal quantum efficiency based on large single crystalline grains and vertical bulk heterojunctions. J Am Chem Soc. 2015;137:9210–9213.10.1021/jacs.5b03144
  • Im J-H, Lee C-R, Lee J-W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3:4088–4093.10.1039/c1nr10867k
  • Stranks SD, Eperon GE, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science. 2013;342:341–344.10.1126/science.1243982
  • Chernov AA. Stability of faceted shapes. J Cryst Growth. 1974;24-25:11–31.10.1016/0022-0248(74)90277-2
  • Beckmann PA. A review of polytypism in lead iodide. Cryst Res Technol. 2010;45:455–460.10.1002/crat.201000066
  • Baikie T, Fang Y, Kadro JM, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A. 2013;1:5628–5641.10.1039/c3ta10518k
  • Ohring M. Chapter 7 - Substrate surfaces and thin-film nucleation. In: Ohring M, editor. Materials Science of Thin Films. 2nd ed. San Diego, CA: Academic Press; 2002. p. 357–415.10.1016/B978-012524975-1/50010-0
  • Saba M, Cadelano M, Marongiu D, et al. Correlated electron–hole plasma in organometal perovskites. Nat Commun. 2014;5:5049.10.1038/ncomms6049
  • de Quilettes DW, Vorpahl SM, Stranks SD, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science. 2015;348:683–686.10.1126/science.aaa5333
  • Stoumpos CC, Malliakas CD, Kanatzidis MG. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem. 2013;52:9019–9038.10.1021/ic401215x
  • Cao DH, Stoumpos CC, Malliakas CD, et al. Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a). APL Mater. 2014;2:091101.10.1063/1.4895038
  • D’Innocenzo V, Srimath Kandada AR, De Bastiani M, et al. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J Am Chem Soc. 2014;136:17730–17733.10.1021/ja511198f
  • Yamada Y, Nakamura T, Endo M, et al. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications. J Am Chem Soc. 2014;136:11610–11613.10.1021/ja506624n
  • Stranks SD, Burlakov VM, Leijtens T, et al. Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys Rev Appl. 2014;2:034007.10.1103/PhysRevApplied.2.034007
  • Gfroerer TH. Photoluminescence in analysis of surfaces and interfaces. encyclopedia of analytical chemistry. Hoboken: Wiley; 2006.
  • De Bastiani M, D’Innocenzo V, Stranks SD, et al. Role of the crystallization substrate on the photoluminescence properties of organo-lead mixed halides perovskites. APL Mater. 2014;2:081509.10.1063/1.4889845
  • Xing G, Mathews N, Sun S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science. 2013;342:344–347.10.1126/science.1243167
  • Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc. 2012;134:17396–17399.10.1021/ja307789s
  • Hao F, Stoumpos CC, Liu Z, et al. Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J Am Chem Soc. 2014;137:10399–10405.
  • Yin X, Yao Z, Luo Q, et al. High efficiency inverted planar perovskite solar cells with solution-processed NiOx hole contact. ACS Appl Mater Interfaces. 2016;9:2439–2448.
  • Arianna M, Joël T, Dennis F, et al. Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells. Nat Photonics. 2014;8:250–255.
  • Wei J, Zhao Y, Li H, et al. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. J Phys Chem Lett. 2014;5:3937–3945.10.1021/jz502111u
  • Chen H-W, Sakai N, Ikegami M, et al. Emergence of hysteresis and transient ferroelectric response in organo-lead halide perovskite solar cells. J. Phys Chem Lett. 2014;164–169.
  • Kim H-S, Park N-G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J Phys Chem Lett. 2014;5:2927–2934.10.1021/jz501392m
  • Unger EL, Hoke ET, Bailie CD, et al. Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy & Environmental Science. 2014;7:3690–3698.
  • Zhang Y, Liu M, Eperon GE, et al. Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells. Mater Horiz. 2015;2:315–322.10.1039/C4MH00238E