2,535
Views
17
CrossRef citations to date
0
Altmetric
New topics / Others

Identification of ground-state spin ordering in antiferromagnetic transition metal oxides using the Ising model and a genetic algorithm

, &
Pages 246-252 | Received 15 Oct 2016, Accepted 23 Feb 2017, Published online: 28 Mar 2017

References

  • Rao CNR. Transition Metal Oxides. Annu Rev Phys Chem. 1989;40:291–326.10.1146/annurev.pc.40.100189.001451
  • Tarascon J, Poizot P, Laruelle S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature. 2000;407:496–499.10.1038/35035045
  • He P, Yu H, Li D, et al. Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem. 2012;22:3680–3695.10.1039/c2jm14305d
  • Zhu X, Zhu Y, Murali S, et al. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano. 2011;5:3333–3338.10.1021/nn200493r
  • Wang H, Cui L-F, Yang Y, et al. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc. 2010;132:13978–13980.10.1021/ja105296a
  • Tilley SD, Cornuz M, Sivula K, et al. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chemie - Int Ed. 2010;49:6405–6408.10.1002/anie.201003110
  • Sivula K, Le Formal F, Grätzel M. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem. 2011;4:432–449.10.1002/cssc.201000416
  • Gao M-R, Xu Y-F, Jiang J, et al. Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite. J Am Chem Soc. 2012;134:2930–2933.10.1021/ja211526y
  • Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 2011;3:24–65.10.1002/cctc.201000378
  • Suntivich J, Gasteiger HA, Yabuuchi N, et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nat Chem. 2011;3:546–550.10.1038/nchem.1069
  • Ramírez A, Hillebrand P, Stellmach D, et al. Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C. 2014;118:14073–14081.10.1021/jp500939d
  • Huang Y, Ding D, Zhu M, et al. Facile synthesis of α-Fe2O3 nanodisk with superior photocatalytic performance and mechanism insight. Sci Technol Adv Mater. 2015;16:014801.10.1088/1468-6996/16/1/014801
  • Labhasetwar N, Saravanan G, Megarajan SK, et al. Perovskite-type catalytic materials for environmental applications. Sci Technol Adv Mater. 2015;16:036002.10.1088/1468-6996/16/3/036002
  • Kinoshita K, Tamura T, Aoki M, et al. Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide. Appl Phys Lett. 2006;89:103509.
  • Lee M-J, Han S, Jeon SH, et al. Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 2009;9:1476–1481.10.1021/nl803387q
  • Sawa A. Resistive switching in transition metal oxides. Mater Today. 2008;11:28–36.10.1016/S1369-7021(08)70119-6
  • Roth WL. Magnetic structures of MnO, FeO, CoO, and NiO. Phys Rev. 1958;110:1333–1341.10.1103/PhysRev.110.1333
  • Hill AH, Jiao F, Bruce PG, et al. Neutron diffraction study of mesoporous and bulk hematite, α-Fe2O3. Chem Mater. 2008;20:4891–4899.10.1021/cm800009s
  • Keimer B, Casa D, Ivanov A, et al. Spin dynamics and orbital state in LaTiO3. Phys Rev Lett. 2000;85:3946–3949.10.1103/PhysRevLett.85.3946
  • Regulski M, Przeniosło R, Sosnowska I, et al. Neutron diffraction study of the magnetic structure of α-Mn2O3. J Alloys Compd. 2004;362:236–240.10.1016/S0925-8388(03)00591-7
  • Tomiyasu K, Fukunaga J, Suzuki H. Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements. Phys Rev B. 2004;70:214434.
  • Park S, Ahn HS, Lee CK, et al. Interaction and ordering of vacancy defects in NiO. Phys Rev B. 2008;77:134103.
  • Rollmann G, Rohrbach A, Entel P, et al. First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B. 2004;69:165107.
  • Ahn H, Cuong DD, Lee J, et al. LDA+U study on fully relaxed LaTiO3 and (SrTiO3)m(LaTiO3)n superlattice structures. J Korean Phys Soc. 2006;49:1536–1542.
  • Hirai S, Goto Y, Sakai Y, et al. The electronic structure of structurally strained Mn3O4 postspinel and the relationship with Mn3O4 Spinel. J Phys Soc Japan. 2015;84:114702.10.7566/JPSJ.84.114702
  • Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B. 1996;54:11169–11186.10.1103/PhysRevB.54.11169
  • Blöchl PE. Projector augmented-wave method. Phys Rev B. 1994;50:17953–17979.10.1103/PhysRevB.50.17953
  • Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–3868.
  • Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys Rev B. 2006;73:195107.10.1103/PhysRevB.73.195107
  • Karlsruhe FIZ. Inorganic crytal structure database. Available from http://icsd.fiz-karlsruhe.de
  • Brown PJ, Forsyth JB, Lelièvre-Berna E, et al. Determination of the magnetization distribution in Cr2O3 using spherical neutron polarimetry. J Phys Condens Matter. 2002;14:1957–1966.10.1088/0953-8984/14/8/323
  • Yoshimori A. A new type of antiferromagnetic structure in the rutile type crystal. J Phys Soc Japan. 1959;14:807–821.10.1143/JPSJ.14.807
  • Franchini C, Podloucky R, Paier J, et al. Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations. Phys Rev B. 2007;75:195128.
  • Curtarolo S, Setyawan W, Hart GLW, et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput Mater Sci. 2012;58:218–226.10.1016/j.commatsci.2012.02.005
  • Jain A, Ong SP, Hautier G, et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.10.1063/1.4812323