1,996
Views
12
CrossRef citations to date
0
Altmetric
Optical, magnetic and electronic device materials

A new method to determine the un-poled elastic properties of ferroelectric materials

, , , ORCID Icon &
Pages 264-272 | Received 18 Oct 2016, Accepted 01 Mar 2017, Published online: 12 Apr 2017

References

  • Wilson SA, Jourdain RPJ, Zhang Q, et al. New materials for micro-scale sensors and actuators. An engineering review. Mater Sci Eng R Reports. 2007;56(1-6):1–129.10.1016/j.mser.2007.03.001
  • Dent AC, Bowen CR, Stevens R, et al. Effective elastic properties for unpoled barium titanate. J Eur Ceram Soc. 2007;27(13-15):3739–3743.10.1016/j.jeurceramsoc.2007.02.031
  • Alemany C, Gonzalez AM, Pardo L, et al. Automatic determination of complex constants of piezoelectric lossy materials in the radial mode. J Phys D Appl Phys. 1995;28:945–956.10.1088/0022-3727/28/5/017
  • IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176–1987. New York, USA, NY: American Standards National Institute; 1987.
  • British Standards Institute, “Piezoelectric properties of ceramic materials and components: Part 2: methods of measurement : low power.” BSI, London, p. BS EN 50324-2:2002, 2002.
  • British Standards Institute, “Piezoelectric properties of ceramic materials and components: part 3 : methods of measurement : high power.” BSI, London, p. BS EN 50324-3: 2002, 2002.
  • Arlt G, Hennings D, de With G. Dielectric properties of fine-grained barium titanate ceramics. J Appl Phys. 1985;58(4):1619–1625.10.1063/1.336051
  • Hackenberger WS, Pan MJ, Vedula V, et al. Effect of grain size on actuator properties of piezoelectric ceramics. Proc SPIE. 1998;3324:28–36.10.1117/12.316878
  • Randall CA, Kim N, Kucera J-P, et al. Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics. J Am Ceram Soc. 1998;81:677–688.
  • Fett I, Munz D. Measurement of Young’s moduli for lead zirconate titanate (PZT) Ceramics. J Test Eval. 2000;28(1):27–35.
  • Devonshire AF. CIX. Theory of barium titanate—Part II. London, Edinburgh, Dublin Philos Mag J Sci. 1951;42(333):1065–1079.10.1080/14786445108561354
  • Marutake M. A calculation of physical constants of ceramic barium titanate. J Phys Scociety Japan. 1956;11(8):807–814.10.1143/JPSJ.11.807
  • Dunn ML. Effects of grain shape anisotropy, porosity, and microcracks on the elastic and dielectric constants of polycrystalline piezoelectric ceramics. J Appl Phys. 1995;78(3):1533–1541.10.1063/1.360246
  • Berlincourt D, Jaffe H. Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev. 1958;111(1):143–148.10.1103/PhysRev.111.143
  • Rödel J, Kreher WS. Effective properties of polycrystalline piezoelectric ceramics in 3rd European Mechanics of Materials Conference on Mechanics and Multi-Physics Processes in Solids : Experiments, Modelling, Applications, Oxford, 1999, Pr9-239–Pr9-247.
  • den Toonder JMJ, van Dommelen JAW, Baaijens FPT. The relation between single crystal elasticity and the effective elastic behaviour of polycrystalline materials: Theory, measurement and computation. Model Simul Mater Sci Eng. 1999;7(6):909–928. Nov.
  • Froehlich A, Brueckner-Foit A, Weyer S. “Effective properties of piezoelectric polycrystals.”, smart structures and materials 2000. Proc SPIE. 2000;3992:279–287.10.1117/12.388212
  • Berlincourt DA, Cmolik C, Jaffe H. Piezoelectric properties of polycrystalline lead titanate zirconate compositions. Proc IRE. 1960;48(2):220–229.10.1109/JRPROC.1960.287467
  • Rödig T, Schönecker A, Gerlach G. A survey on piezoelectric ceramics for generator applications. J Am Ceram Soc. 2010;93(4):901–912.10.1111/jace.2010.93.issue-4
  • Berlincourt D. Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling. J Acoust Soc Am. 1964;36(3):515–520.10.1121/1.1918990
  • Marutake M, Ikeda T. Elastic constants of porous materias, especially of BaTiO3 ceramics. J Phys Soc Jpn. 1956;11(8):814–818.10.1143/JPSJ.11.814
  • Bechmann R. Elastic, piezoelectric, and dielectric constants of polarized barium titanate ceramics and some applications of the piezoelectric equation. J Acoust Soc Am. 1956;28(3):347–350.10.1121/1.1908324
  • Berlincourt D, Krueger HHA, Near C. Technical publication TP-226: Properties of piezoelectric ceramics. Wrexham (UK): Morgan Electro Ceramics Ltd.;1999.
  • Zgonik M, Bernasconi P, Duelli M, et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals. Phys Rev. 1994;50(9):5941–5949.10.1103/PhysRevB.50.5941
  • Forrester JS, Kisi EH. Ferroelastic switching in a soft lead zirconate titanate. J Eur Ceram Soc. 2004;24(3):595–602.10.1016/S0955-2219(03)00247-4
  • Duffy W, Cheng BL, Gabbay M, et al. Anelastic behavior of barium-titanate-based ceramic materials. Metall Mater Trans A. 1995;26(7):1735–1739.10.1007/BF02670760
  • PI Ceramic GmbH - Material coefficients for PIC151. [ Online]. Available from:www.piceramic.com.
  • PI Ceramic GmbH - Material coefficients for PIC155. [ Online]. Available from:www.piceramic.com.
  • Nguyen CH, Pietrzko SJ. FE analysis of a PZT-actuated adaptive beam with vibration damping using a parallel R – L shunt circuit. Finite Elem Anal Des. 2006;42:1231–1239.10.1016/j.finel.2006.06.003
  • Stroyan JJ. Processing and characterization of PVDF, PVDF-TrFE and PVDF-TrFE-PZT composites. [ MSc. Thesis]. Washington: Washington State University; 2004.